

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2018/0261786 A1

(43) **Pub. Date:**

Sep. 13, 2018

(54) ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

(71) Applicant: Universal Display Corporation,

Ewing, NJ (US)

(72) Inventors: Jui-Yi Tsai, Ewing, NJ (US); Alexey Borisovich Dyatkin, Ewing, NJ (US); Gregg Kottas, Ewing, NJ (US); Chun

Lin, Ewing, NJ (US)

(21) Appl. No.: 15/915,385

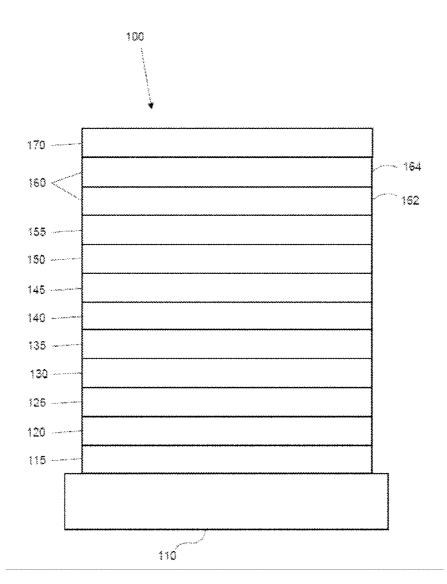
(22) Filed: Mar. 8, 2018

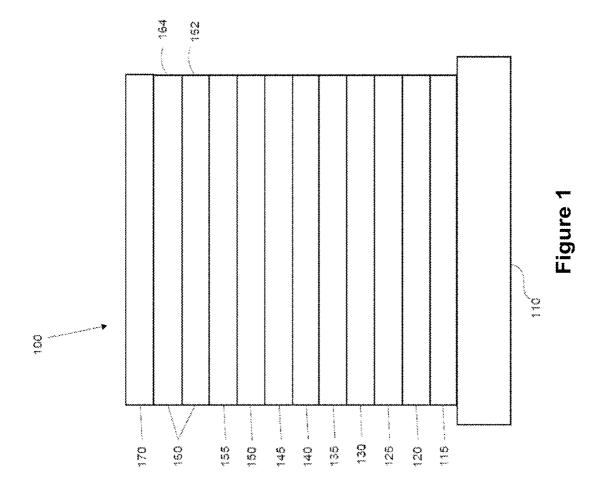
Related U.S. Application Data

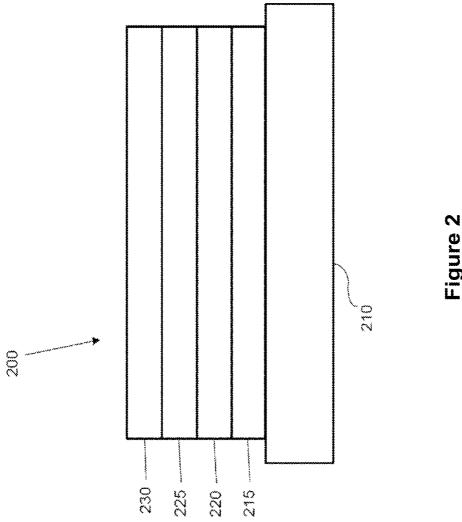
(60) Provisional application No. 62/469,605, filed on Mar. 10, 2017.

Publication Classification

(51) Int. Cl. (2006.01)H01L 51/50 H01L 51/52 (2006.01)


H01L 27/32 (2006.01)C07F 15/00 (2006.01)C09K 11/06 (2006.01)H01L 51/00 (2006.01)


(52) U.S. Cl.


CPC .. H01L 51/5024 (2013.01); C09K 2211/1037 (2013.01); H01L 51/5072 (2013.01); H01L 51/5092 (2013.01); H01L 51/5096 (2013.01); H01L 51/5234 (2013.01); H01L 51/5206 (2013.01); H01L 27/322 (2013.01); C07F 15/0033 (2013.01); C07F 15/0086 (2013.01); C09K 11/06 (2013.01); H01L 51/0085 (2013.01); H01L 51/0087 (2013.01); C09K 2211/185 (2013.01); C09K 2211/1059 (2013.01); C09K 2211/1051 (2013.01); C09K 2211/1048 (2013.01); C09K 2211/1033 (2013.01); H01L 51/5056 (2013.01)

(57)**ABSTRACT**

The present invention includes metal complexes that contain a carborane moiety. These metal complexes show desired properties in OLEDs.

ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application Ser. No. 62/469,605, filed Mar. 10, 2017, the entire contents of which are incorporated herein by reference.

EIEL D

[0002] The present invention relates to compounds for use as emitters, and devices, such as organic light emitting diodes, including the same.

BACKGROUND

[0003] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.

[0004] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

[0005] One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single EML device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.

[0006] One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)₃, which has the following structure:

[0007] In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.

[0008] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules. [0009] As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second

layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between.

[0010] As used herein, "solution processible" means

[0010] As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

[0011] A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

[0012] As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level.

[0013] As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level

diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

[0014] More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

[0015] There is a need in the art for cyclometalated

[0015] There is a need in the art for cyclometalated aromatics for OLED applications. The present invention addresses this unmet need.

SUMMARY

[0016] According to an embodiment, a compound is provided that includes a first ligand \mathcal{L}_{A} having the structure of Formula I shown below

Formula I

[0017] wherein rings A and B are each a 5- or 6-membered carbocyclic or heterocyclic ring;

[0018] wherein each R^A and R^B independently represents mono to the maximum possible number of substitution, or no substitution.

[0019] wherein Z^1 and Z^2 are each independently selected from the group consisting of carbon or nitrogen;

[0020] wherein each R^A and R^B is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, a boron containing group, and combinations thereof;

[0021] wherein any adjacent substituents are optionally joined or fused to form a ring;

[0022] wherein (1) at least one R^A or R^B comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^A or one pair of two adjacent R^B form a first group fused to ring A or B;

[0023] wherein the first group including the fused edge is a closo-carborane having a formula of $C_2B_nH_n$;

[0024] wherein n is an integer of 3 to 10;

[0025] wherein the closo-carborane can be further substituted:

[0026] wherein the ligand L_A is coordinated to a metal M; [0027] wherein the metal M can be coordinated to other ligands; and

[0028] wherein the ligand L_A is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

[0029] According to another embodiment, an organic light emitting diode/device (OLED) is also provided. The OLED can include an anode, a cathode, and an organic layer, disposed between the anode and the cathode. The organic layer can include a compound that includes a ligand L_A . According to yet another embodiment, the organic light

emitting device is incorporated into one or more devices selected from a consumer product, an electronic component module, and/or a lighting panel.

[0030] According to yet another embodiment, a formulation containing a compound of Formula I is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] FIG. 1 shows an organic light emitting device. [0032] FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

DETAILED DESCRIPTION

[0033] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

[0034] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

[0035] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.

[0036] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.

[0037] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F_4 -TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent

Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electricallyconductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

[0038] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

[0039] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

[0040] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247, 190 to Friend et al., which is incorporated by reference in its

entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

[0041] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

[0042] Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a "mixture", the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.

[0043] Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, headsup displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.), but could be used outside this temperature range, for example, from -40 degree C. to +80 degree C.

[0044] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures. [0045] The term "halo," "halogen," or "halide" as used

[0046] The term "alkyl" as used herein contemplates both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dim-

herein includes fluorine, chlorine, bromine, and iodine.

ethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.

[0047] The term "cycloalkyl" as used herein contemplates cyclic alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 10 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.

[0048] The term "alkenyl" as used herein contemplates both straight and branched chain alkene radicals. Preferred alkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl group may be optionally substituted.

[0049] The term "alkynyl" as used herein contemplates both straight and branched chain alkyne radicals. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.

[0050] The terms "aralkyl" or "arylalkyl" as used herein are used interchangeably and contemplate an alkyl group that has as a substituent an aromatic group. Additionally, the aralkyl group may be optionally substituted.

[0051] The term "heterocyclic group" as used herein contemplates aromatic and non-aromatic cyclic radicals. Hetero-aromatic cyclic radicals also means heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers, such as tetrahydrofuran, tetrahydropyran, and the like. Additionally, the heterocyclic group may be optionally substituted.

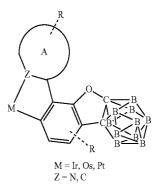
[0052] The term "aryl" or "aromatic group" as used herein contemplates single-ring groups and polycyclic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is aromatic, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.

[0053] The term "heteroaryl" as used herein contemplates single-ring hetero-aromatic groups that may include from one to five heteroatoms. The term heteroaryl also includes polycyclic hetero-aromatic systems having two or more rings in which two atoms are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.

[0054] The alkyl, cycloalkyl, alkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl may be unsubstituted or may be substituted with one or more substituents selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, cyclic amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0055] As used herein, "substituted" indicates that a substituent other than H is bonded to the relevant position, such as carbon. Thus, for example, where R' is mono-substituted, then one R' must be other than H. Similarly, where R' is di-substituted, then two of R' must be other than H. Similarly, where R' is unsubstituted, is hydrogen for all available positions.

[0056] The "aza" designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective fragment can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo quinoxaline and dibenzo [f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.


[0057] It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.

[0058] Compounds of the Invention

[0059] Cyclometalated aromatics have been commonly used for assembling luminescence compounds, the success of which may be attributed to the following factors. Compared with other organic ligands, aromatics cyclometalated tend to form the strongest bonding interaction with transition-metal element. The stronger metal-ligand bonding would increase the d-d energy gap and afford less radiationless quenching due to the suppressed population to the higher lying, repulsive d-d excited state. In one embodiment, a cyclometallation reaction refers to the coordination of a heteroaromatic chelate to a metal element via a covalent metal-carbon bond; the remaining dative bonds may be derived from heteroatom such as nitrogen in the ligand Non-limiting examples of cyclometalated aromatics are illustrated below:

[0060] Carboranes are a class of boron hydride clusters in which one or more BH vertices are replaced by CH units. They have many characteristics such as spherical geometry, remarkable thermal and chemical stability, and a hydrophobic molecular surface, leading to many applications in medicinal, materials, and coordination chemistry. Like arenes, carboranes may also undergo electrophilic aromatic substitution.

[0061] In part, the invention includes the use of carboranes as a cyclometalated moiety, as shown in the non-limiting example below. This novel design may be useful for developing cyclometalated aromatics for OLED applications.

[0062] In one aspect, the present invention includes a compound comprising a first ligand L_4 having Formula I:

[0063] wherein rings A and B are each a 5- or 6-membered carbocyclic or heterocyclic ring;

[0064] wherein each R^A and R^B independently represents mono to the maximum possible number of substitution, or no substitution.

[0065] wherein Z^1 and Z^2 are each independently selected from the group consisting of carbon or nitrogen;

[0066] wherein R^A and R^B are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, a boron containing group, and combinations thereof;

[0067] wherein any adjacent substituents are optionally joined or fused to form a ring;

[0068] wherein (1) at least one R^A or R^B comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^A or one pair of two adjacent R^B form a first group fused to ring A or B;

[0069] wherein the first group including the fused edge is a closo-Carborane having a formula of $C_2B_nH_n$;

[0070] wherein n is an integer of 3 to 10;

[0071] wherein the closo-carborane can be further substituted:

[0072] wherein the ligand L_A is coordinated to a metal M; [0073] wherein the metal M can be coordinated to other ligands; and

[0074] wherein the ligand L_A is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

[0075] In one embodiment, A and B are each a 5-membered ring. In one embodiment, A is a 5-membered ring and B is a 6-membered ring. In one embodiment, A is a 6-membered ring, and B is a 5-membered ring. In one embodiment, A and B are each a 6-membered ring.

[0076] In one embodiment, R^A and R^B are each independently selected from the group consisting of hydrogen, deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, and combinations thereof. [0077] In one embodiment, M is selected from the group consisting of Ir, Rh, Re, Ru, Os, Pt, Au, and Cu. In one embodiment, M is Ir or Pt.

[0078] In one embodiment, the compound is homoleptic. In another embodiment, the compound is heteroleptic.

[0079] In one embodiment, n is 10.

[0080] In one embodiment, one of Z^1 and Z^2 is nitrogen, and one of Z^1 and Z^2 is carbon.

[0081] In one embodiment, both Z^1 and Z^2 are carbon.

[0082] In one embodiment, both Z^1 and Z^2 are nitrogen.

[0083] In one embodiment, ring A is selected from the group consisting of pyridine, pyrimidine, imidazole, imidazole-derived carbene, and pyrazole; and ring B is benzene. In one embodiment, ring A is selected from the group consisting of pyridine, pyrimidine, imidazole, and pyrazole; and ring B is benzene. In one embodiment, ring A is selected from the group consisting of pyridine, pyrimidine, imidazole, imidazole, imidazole, derived carbene, pyrazole, N-heterocyclic carbene, triazole, tetrazole, thiazole, oxazole, and isoxazole.

[0084] In one embodiment, at least one R^A or R^B comprises an aromatic group further fused by the first group.

[0085] In one embodiment, at least one pair of two adjacent R^A or one pair of two adjacent R^B form the first group fused to ring A or B.

[0086] In one embodiment, at least one R^A or R^B comprises an aromatic group further fused by the first group, and this R^A or R^B joins with an adjacent substituent to form a ring that is fused to ring A or B.

[0087] In one embodiment, ligand L_A is selected from the group consisting of:

[0088] wherein each Y¹ to Y¹³ are independently selected from the group consisting of carbon and nitrogen; wherein Y¹ is selected from the group consisting of BR e , NR e , PR e , O, S, Se, C=O, S=O, SO₂, CR e R f , SiR e R f , and GeR e R f ;

[0089] wherein R^e and R^f are optionally fused or joined to form a ring;

[0090] wherein each R^a , R^b , R^c , and R^d may independently represent from mono substitution to the maximum possible number of substitution, or no substitution;

[0091] wherein R^a, R^b, R^c, R^d, R^e and R^f are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

[0092] wherein any two adjacent substituents of R^a , R^b , R^c , and R^d are optionally fused or joined to form a ring or to form a multidentate ligand; and

[0093] wherein (1) at least one of R^a , R^b , R^c , R^d , R^e and R^f comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^a , two adjacent R^b , two adjacent R^c , or two adjacent R^d form a first group fused to the ring they attach thereto.

[0094] In one embodiment, ligand L_A is selected form the group consisting of:

[0095] In one embodiment, the ligand L_A is

$$\mathbb{R}^a$$

[0096] $\,$ In one embodiment, the first group is selected from the group consisting of:

$$H_nB_n \overbrace{\bigcirc \big|_{C^*,}^{C^*}}^{C^*} H_nB_{n\text{--}1}C \overbrace{\bigcirc \big|_{B^*, \text{ and }}^{C^*}}^{C^*} H_nC_2B_{n\text{-}2} \overbrace{\bigcirc \big|_{B^*;}^{B^*}}^{B^*}$$

[0097] wherein the atoms with * represent the fused edge. [0098] In one embodiment, the ligand \mathcal{L}_A is selected from the group consisting of:

L_A 1a-1-1

$$H_nB_n$$

$$Q = \begin{pmatrix} C_1 & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

 $\mathcal{L}_A \ 1\text{a-}2\text{-}1$

-continued

BnHn

L_A 1a-1-3

$$\mathbb{R}^{a'}$$
 $\mathbb{I}^{\frac{1}{3}}$ $\mathbb{I}^{\frac{1}{3}}$ $\mathbb{I}^{\frac{1}{3}}$ $\mathbb{I}^{\frac{1}{3}}$

 L_A 1a-1-4

$$H_nB_{n-1}$$

$$R^{b}$$

$$R^{b}$$

$$R^{a}$$

$$R^{b}$$

L_A 1a-1-5

 \mathcal{L}_A 1
a-1-6

$$H_nB_{n-2}$$

$$R^{b'}$$

$$R^{b'}$$

-continued

$$R^{a'}$$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$

 $\mathrm{L}_A~1\mathrm{a}\text{-}2\text{-}2$

$$R^{b'}$$
 $R^{b'}$
 R

L_A 1a-2-3

$$H_nB_{n-1}$$

$$R^{a'}$$

$$R^{a'}$$

$$R^{b'}$$

 $\mathrm{L}_A~1\mathrm{a}\text{-}2\text{-}4$

$$R^{d'}$$

$$A^{d'}$$

$$A$$

 L_A 1a-2-5

$$R^{a'}$$

$$H_nB_{n-2}$$

$$R^{b'}$$

 $\mathcal{L}_{A} \; 2\text{a-1-1}$

$$\mathbb{L}_{A}$$
 $\mathbb{2}a$

$$L_A$$
 2a-1-2
$$H_nB_n \bigcirc C$$

$$R^{b'} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$H_nB_n$$
 $R^{a'}$
 $R^{b'}$

$$L_A$$
 3a-1-1 $R^{a'}$

LA 3a-1-2
$$\mathbb{R}^{a'}$$

$$\mathbb{R}^{a'} \subset \mathbb{C}$$

$$\mathbb{R}^{n}\mathbb{H}_{n}$$

$$\mathbb{R}^{b'}$$

$$\mathbb{R}^{b'}$$

LA 3a-2-1
$$H_nB_n = \bigcap_{C} \bigcap_{R^{b'}} \bigcap_{C} \bigcap_{R^{b'}} \bigcap_{C} \bigcap_{R^{b'}} \bigcap_{C} \bigcap_{C}$$

LA
$$3a-2-2$$

$$R^{a'}$$

$$N$$

$$R^{b'}$$

$$C$$

$$C$$

$$H_{n}B_{n}$$

$$R^{b'}$$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$

 L_A 6a-2-1

-continued

L_A 5a-1-2

BnHn
$$R^{a'}$$

$$R^{b'}$$

$$R^{b'}$$

 L_A 5a-1-3

 $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$ $\mathbb{R}^{d'}$

$$R^{a'}$$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$

-continued

$$R^{c'}$$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$

$$R^{a'}$$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$

 $R^{c'}$ $R^{c'}$ $R^{b'}$ $R^{b'}$

HnBn $\mathbb{R}^{a'}$, $\mathbb{R}^{a'}$,

BnHn
$$R^{a'}$$
 $R^{a'}$
 $R^{a'}$
 $R^{b'}$

$$\begin{array}{c} L_A \text{ 8a-2-1} \\ \\ R^{b'} \end{array}$$

$$L_A$$
 9a-1-1

$$L_A$$
 9a-1-2

BnHn

 N
 $R^{b'}$

 $L_{\mathcal{A}} \, 9a\text{-}2\text{-}1$ BnHn

$$\begin{array}{c} L_{A}\,10\text{a-3-1} \\ \\ R^{a'} \\ \\ R^{b'} \end{array}$$

$$L_A$$
 11a-1-1

 A 11a-1-1

 A 11a-1-1

 A 11a-1-1

 A 11a-1-1

$$\begin{array}{c} \mathbb{R}^{a'} \\ \mathbb{R}^{a'} \\ \mathbb{R}^{b'} \\$$

$$\mathbb{R}^{b'}$$

BOC

Bn-1Hn

 $L_A 11a-4-1$

-continued L_A 12a-4-1

L_A 12a-1-1

[0099] wherein each $R^{a'}$, $R^{b'}$, and $R^{c'}$ may independently represent from mono substitution to the maximum possible number of substitution, or no substitution;

[0100] wherein $R^{a'}$, $R^{b'}$, and $R^{c'}$ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

[0101] wherein any two adjacent substituents of $R^{a'}$, $R^{b'}$, and Rc' are optionally fused or joined to form a ring or to form a multidentate ligand.

[0102] In one embodiment, the ligand \mathcal{L}_{A} is selected from the group consisting of:

L_A 12a-2-1

L_A 12a-3-1

_					
	L_{Ai} , i	\mathcal{L}_{A} type	$R^{a'}$	$\mathbb{R}^{b'}$	$\mathbb{R}^{c'}$
-	1.	1a-1-1	Н	Н	_
	2.	1a-1-1	5-Me	H	_
	3.	1a-1-1	5-CD_3	Η	_
	4.	1a-1-1	5-iPr	Η	_
	5.	1a-1-1	5-CD ₂ CHMe ₂	Η	_
	6.	1a-1-1	5-CDMe ₂	Η	_
	7.	1a-1-1	5-iPr	$4-CD_3$	_
	8.	1a-1-1	5-CD ₂ CHMe ₂	$4-CD_3$	_
	9.	1a-1-1	5-CDMe ₂	$4-CD_3$	
	10.	1a-1-2	H	H	_
	11.	1a-1-2	3-Me	Η	_
	12.	1a-1-2	$3-CD_3$	H	_
	13.	1a-1-2	3-iPr	Η	_
	14.	1a-1-2	$3-CD_2CHMe_2$	Η	_
	15.	1a-1-2	3 -CDMe $_2$	Η	_
	16.	1a-1-2	3-iPr	$4-CD_3$	_
	17.	1a-1-2	$3-CD_2CHMe_2$	$4-CD_3$	_
	18.	1a-1-2	3-CDMe_2	$4-CD_3$	_
	19.	1a-1-2	H	$4-CD_3$	_
	20.	1a-1-2	3-Me	$4-CD_3$	_
	21.	1a-1-2	$3-CD_3$	$4-CD_3$	_
	22.	1a-1-3	H	H	_
	23.	1a-1-3	4-Me	Η	_
	24.	1a-1-3	$4-CD_3$	Η	_
	25.	1a-1-3	4-iPr	Η	_
	26.	1a-1-3	4-CD ₂ CHMe ₂	H	_
	27.	1a-1-3	4-CDMe ₂	Η	_
	28.	1a-1-3	4-iPr	$4-CD_3$	_
	29.	1a-1-3	$4-CD_2CHMe_2$	$4-CD_3$	_
	30.	1a-1-3	4-CDMe_2	$4-CD_3$	_
	31.	1a-1-3	CD3	CD3	_
	32.	1a-1-4	H	H	_
	33.	1a-1-5	Н	Η	_
	34.	1a-1-6	H	H	_

101.

102.

103.

104.

105.

106.

107.

108.

5a-2-2

5a-2-2

6a-1-1

6a-2-1

6a-3-1

7a-1-1

7a-1-1

7a-1-1

Н

Н

Η

Η

Me

 CD_3

Η

Η

Н

Н

Η

Н

Η

2,6-(iPr)₂

Η

Η

Η

Η

Η

 $2,6-(CDMe_2)_2$

-continued						-continued					
L_{Ai} , i	L_A type	$R^{a'}$	$R^{b'}$	$R^{c'}$	L_{Ai} , i	L_A type	$R^{a'}$	$R^{b'}$	$R^{c'}$		
35.	1a-2-1	Н	Н	_	100	7 1 2		7.7			
36. 37.	1a-2-1 1a-2-1	4-CH ₃ 5-CH ₃	H H	_	109.	7a-1-2	Me	H	H		
38.	1a-2-1 1a-2-1	4-CD ₃	п Н	_	110.	7a-1-2	Ph	H	Н		
39.	1a-2-1	5-CD ₃	Н	_	111.	7a-1-2	CD_3	Η	H		
40.	1a-2-1	$4.5-(CD_3)_2$	H	_	112.	7a-1-3	Me	H	H		
41.	1a-2-1	4-CD ₂ CHMe ₂	H	_	113.	7a-1-3	Ph	H	Н		
42. 43.	1a-2-1 1a-2-1	5-CD ₂ CHMe ₂ 4-cyclohexyl	H H	_	114.	7a-1-3	CD_3	H	Н		
44.	1a-2-1	5-cyclohexyl	H	_	115.	8a-1-1	H	H	7-CH ₃		
45.	1a-2-1	4-CH ₃	H	_	116.	8a-1-1	Н	H	$7-CD_3$		
46.	1a-2-2	H	Н	_	117.	8a-1-1	Н	H	7-CD(Me) ₂		
47. 48.	1a-2-2 1a-2-2	4-CH ₃ 5-CH ₃	H 2-Me	_	118.	8a-1-1	Н	H	7-CH(Me) ₂		
49.	1a-2-2	4-CD ₃	H	_	119.	8a-1-1	Н	Н	Н		
50.	1a-2-2	$5-CD_3$	2-Me	_	120.	8a-1-2	Н	H	7-CH ₃		
51.	1a-2-2	4,5-(CD ₃) ₂	H	_	121.	8a-1-2	Н	Н	7-CD ₃		
52. 53.	1a-2-2 1a-2-2	4-CD ₂ CHMe ₂ 5-CD ₂ CHMe ₂	H H	_	122.	8a-1-2	Н	Н	7-CD(Me) ₂		
54.	1a-2-2 1a-2-2	4-cyclohexyl	H	_			H		· · · =		
55.	1a-2-2	4-cyclohexyl	2-Me	_	123.	8a-1-2		Н	7-CH(Me) ₂		
56.	1a-2-2	4-cyclopentyl	H	_	124.	8a-1-2	H 	H 	H		
57.	1a-2-2	4-cyclopentyl	2-Me	_	125.	8a-2-2	Н	Н	Н		
58. 59.	1a-2-3 1a-2-4	H H	H H	_	126.	8a-2-2	4-CH ₃	H	Н		
60.	1a-2-5	Н	Н	_	127.	8a-2-2	$4-CD_3$	Η	Н		
61.	2a-1-1	H	H	_	128.	8a-2-2	4-CDMe ₂	H	Н		
62.	2a-1-2	H	H	_	129.	8a-2-3	Н	H	Н		
63. 64.	2a-1-3 3a-1-1	H H	H H	_	130.	8a-2-3	4-CH ₃	H	Н		
65.	3a-1-1	H	H		131.	8a-2-3	$4-CD_3$	H	H		
66.	3a-1-3	H	H	_	132.	8a-2-3	4-CDMe ₂	Н	Н		
67.	3a-2-1	H	H	_	133.	9a-1-1	Н	Н	Н		
68. 69.	3a-2-2 4a-2-3	H H	H H	_	134.	9a-1-1	Н	Н	Н		
70.	5a-1-1	Н	Н	H	135.	9a-1-1	Н	Н	Н		
71.	5a-1-1	H	H	2,6-(CH ₃) ₂	136.	9a-1-1	Н	Н	Н		
72.	5a-1-1	H	H	$2,6-(CD_3)_2$	137.	9a-1-1	Н	Н	Н		
73. 74.	5a-1-1	H	H	2,6-(iPr) ₂			Н				
74. 75.	5a-1-1 5a-1-1	H H	H 4-Me	2,6-(CDMe ₂) ₂ H	138.	9a-1-2		Н	Н		
76.	5a-1-1	Н	4-Me	2,6-(CH ₃) ₂	139.	9a-1-2	H	H	H		
77.	5a-1-1	H	4-Me	$2,6-(CD_3)_2$	140.	9a-1-2	H	H	Н		
78.	5a-1-1	H	4-Me	2,6-(iPr) ₂	141.	9a-1-2	Н	H	Н		
79. 80.	5a-1-1 5a-1-1	H H	4-Me 4-CD ₃	2,6-(CDMe ₂) ₂ 2,6-(CH ₃) ₂	142.	9a-1-2	Н	H	Н		
81.	5a-1-1	H	4-CD ₃	$2,6-(CD_3)_2$	143.	9a-2-1	Н	Η	Н		
82.	5a-1-1	H	$4-CD_3$	2,6-(iPr) ₂	144.	9a-2-2	H	H	H		
83.	5a-1-1	H	$4-CD_3$	$2,6-(CDMe_2)_2$	145.	10a-1-1	4-Me	H	Н		
84. 85.	5a-1-2 5a-1-3	H H	H H	H 2,6-(CD ₃) ₂	146.	11a-1-1	4-Me	H	H		
86.	5a-1-5	H	Н	2,6-(CD ₃) ₂ 2,6-(CD ₃)	147.	12a-1-1	4-Me	H	H		
87.	5a-2-1	H	H	2,6-(CD ₃) ₂							
88.	5a-2-1	H	Η	$2,6-(CD_3)_2$							
89. 90.	5a-2-1	H H	H H	2,6-(CD ₃) ₂	[0103]	In one e	embodiment	the compo	ound has a formul		
90. 91.	5a-2-1 5a-2-1	Н	п 4-Ме	2,6-(CD ₃) ₂ 2,6-(CD ₃) ₂				-	are each a bidentat		
92.	5a-2-1	H	4-Me	2,6-(CD ₃) ₂					0, 1, or 2; z is 0, 1		
93.	5a-2-1	H	4-Me	$2,6-(CD_3)_2$					f the metal M.		
94.	5a-2-1	H	4-Me	2,6-(CD ₃) ₂	or z; an	u x+y+Z	is me oxidati	ion state 0	i me metai M.		
95. 96.	5a-2-1 5a-2-1	H H	4-Me 4-CD ₃	2,6-(CD ₃) ₂ 2,6-(CD ₃) ₂	[0104]	In one e	embodiment,	the compo	ound has a formul		
90. 97.	5a-2-1	H	$4-CD_3$ $4-CD_3$	2,6-(CD ₃) ₂ 2,6-(CD ₃) ₂							
98.	5a-2-2	Н	Н	H							
99.	5a-2-2	Н	H	$2,6-(CH_3)_2$			re different f				
100.	5a-2-2	H	H	2,6-(CD ₃) ₂							
101.	5a-2-2	H	Η	2,6-(iPr) ₂	[0105]	In one ϵ	embodiment.	the compo	ound has a formul		

[0105] In one embodiment, the compound has a formula of $Pt(L_A)(L_B)$; and wherein L_A and L_B can be the same or different.

[0106] In one embodiment, L_A and L_B are connected to form a tetradentate ligand. In another embodiment, $\mathbf{L}_{\!\scriptscriptstyle A}$ and L_B are connected at two places to form a macrocyclic tetradentate ligand.

[0107] In one embodiment, $L_{\it B}$ is selected from the group consisting of:

$$\begin{array}{c} R_{a} \\ R_{b} \\ R_{b} \\ R_{c} \\$$

-continued

-continued

$$X^{4} = X^{3} = X^{4} = X^{3} = X^{4} = X^{3} = X^{4} = X^{4$$

-continued
$$R_{a} \qquad X^{2} \qquad X^{d} \qquad X^{1} \qquad X^{1} \qquad X^{1} \qquad X^{2} \qquad X^{1} \qquad X^{2} \qquad X$$

[0108] wherein each X^1 to X^{13} are independently selected from the group consisting of carbon and nitrogen;

[0109] wherein X is selected from the group consisting of BR', NR', PR', O, S, Se, C=O, S=O, SO₂, CR'R", SiR'R", and GeR'R";

[0110] wherein R' and R" are optionally fused or joined to form a ring;

[0111] wherein each R_a , R_b , R_c , and R_d independently represents mono to the maximum possible number of substitution, or no substitution;

[0112] wherein each R', R", R_a , R_b , R_c , and R_d are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

[0113] wherein any two adjacent substituents of R_a , R_b , R_c , and R_d are optionally fused or joined to form a ring or form a multidentate ligand.

[0114] In one embodiment, L_B is selected from the group consisting of:

$$R_a$$
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

-continued
$$R_a$$
 R_b
 R_c
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

$$R_b$$
 R_a
 R_b
 R_a

-continued
$$R_{b} = \begin{pmatrix} R_{a} & R_{b} & N & R_{a} \\ R_{c} & R_{c} & R_{c} & R_{c} \end{pmatrix}$$

$$R_{b} = \begin{pmatrix} R_{a} & R_{b} & N & R_{a} \\ R_{c} & R_{c} & R_{c} & R_{c} & R_{c} \end{pmatrix}$$

$$R_{b} = \begin{pmatrix} R_{a} & R_{b} & N & R_{a} \\ R_{c} & R_{c} & R_{c} & R_{c} & R_{c} & R_{c} \end{pmatrix}$$

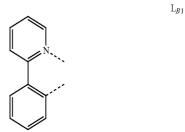
[0115] In one embodiment, the compound is the Compound Ax having the formula $Ir(L_{Ai})_2(L_{Cj})$; wherein x=17i+j-17; i is an integer from 1 to 147, and j is an integer from 1 to 17; and

[0116] wherein \mathcal{L}_C is selected from the group consisting of:

$$L_{CI}$$
 L_{CI}
 L_{CI}

wherein L_B is selected from the group consisting of:

L_{CB}

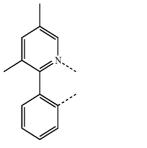

L_{C14}

L_{CIS}

, and , and

L_{C17}

[0117] In one embodiment, the compound is the Compound By having the formula ${\rm Ir}({\rm L}_{Ai})({\rm L}_{Bk})_2$; wherein y=300i+k-300; i is an integer from 1 to 147, and k is an integer from 1 to 300; and



 L_{B2}

L_{B3}

L_{B4}

L_{BS}

$$L_{B10}$$

$$L_{B11}$$

$$CD_3$$
 N

$$L_{B13}$$

$$L_{B14}$$
 D_3C
 N

$$CD_3$$
 D_3C
 N
 N

$$L_{B20}$$

$$\begin{array}{c} L_{B24} \\ \\ D_3C \\ \\ \end{array}$$

$$L_{B25}$$
 D_3C
 D
 CD_3

$$L_{B26}$$

$$\mathcal{L}_{B27}$$
 $\mathcal{D}_{3}\mathcal{C}$

$$L_{B28}$$

$$\begin{array}{c} \text{L}_{B29} \\ \text{D}_{3}\text{C} \\ \end{array}$$

$$L_{B32}$$

$$L_{B34}$$
 CD_3

$$L_{B35}$$
 D
 D
 D
 D

$$L_{B36}$$
 $D_{3}C$
 $D_{3}C$
 $D_{3}C$

$$L_{B37}$$
 CD_3
 CD_3

$$L_{B38}$$

$$L_{B40}$$

$$L_{B41}$$

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C

$$L_{B43}$$
 $D_{3}C$
 N

$$L_{B44}$$

$$D_{3}C$$

$$L_{B48}$$

$$D_3C$$
 D D D_3C D

$$D_{3}C$$
 $D_{3}C$
 $D_{3}C$
 $D_{3}C$
 $D_{4}C$
 $D_{5}C$
 D

$$L_{B51}$$

$$L_{B52}$$

 \mathcal{L}_{B57}

 L_{B58}

$$D_3C$$
 D CD_3 CD_3

 \mathcal{L}_{B64}

 L_{B59}

$$CD_3$$
 CD_3
 CD_3

$$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C} \\ \end{array}$$

$$\mathsf{L}_{B68}$$

$$L_{B70}$$

 \mathbf{L}_{B71}

$$L_{B73}$$

 \mathbb{L}_{B82}

 \mathbb{L}_{B83}

-continued

 \mathcal{L}_{B77}

 L_{B78}

-continued

 \mathcal{L}_{B79}

$$L_{B80}$$

$$\bigcup_{D}^{D}$$

 \mathbb{L}_{B86}

L_{B90}

 \mathcal{L}_{B87}

 L_{B91}

L_{B89}

 \mathbb{L}_{B88}

$$CD_3$$
 N
 D
 D
 CD_3

 L_{B93}

 \mathbb{L}_{B92}

$$D_3$$
C CD_3

$$L_{B94}$$

$$L_{B95}$$

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C

$$L_{B97}$$
 D_3C
 N

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C

$$L_{B101}$$

 \mathbb{L}_{B102}

-continued

 \mathbb{L}_{B106}

 \mathbb{L}_{B103}

$$D_3C$$
 D_3C
 D_3C

 L_{B107}

$$CD_3$$

$$D_3C$$
 CD_3
 CD_3

 \mathbb{L}_{B108}

$$L_{B104}$$

 L_{B105}

$$D_3C$$
 D_3C
 D_3C
 D_3C

 L_{B109}

$$D_3$$
C D_3 D_3 C D_3 D_3 C D_3

$$CD_3$$
 CD_3 CD_3 CD_3

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C

 D_3C D_3C N N

$$L_{B111}$$
 D_3C
 D_3C
 D_3C
 D_3C

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C

$$\begin{array}{c} \text{L}_{B118} \\ \text{D} \\ \text{D} \\ \text{CD}_3 \\ \end{array}$$

$$L_{B119}$$
 CD_3
 CD_3

 \mathbb{L}_{B122}

 \mathbb{L}_{B123}

-continued

$$L_{B120}$$
 D_3C
 D
 N

$$L_{B|21}$$
 N
 CD_3

$$D$$
 D
 N
 CD_3

$$\bigcap_{CD_3}^{D}$$

-continued

$$L_{B124}$$
 D
 D
 N
 CD_3

$$L_{B125}$$
 D_3C
 CD_3
 CD_3

 \mathbb{L}_{B126}

 L_{B127}

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C

 L_{B128}

$$L_{B129}$$
 D_3C
 D_3C
 D_3C

 D_3C CD_3 CD_3 CD_3

 L_{B130}

$$\begin{array}{c} CD_3 \\ D_3C \\ \end{array}$$

-continued

$$\begin{array}{c} D \\ CD_3 \\ D_3C \\ \end{array}$$

 $\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C}\\ \text{D}\\ \text{CD}_3\\ \text{CD}_3\\ \text{CD}_3\\ \end{array}$

$$\begin{array}{c} L_{B134} \\ D_{3}C \\ D_{3}C \\ \end{array}$$

$$CD_3$$
 D_3C
 CD_3
 CD_3
 CD_3

 $\begin{array}{c} L_{B136} \\ D_3C \\ \\ D_3C \\ \end{array}$

$$L_{B140}$$

$$L_{E141}$$

$$L_{B143}$$

$$\begin{array}{c} L_{B144} \\ D \\ D \\ D \\ \end{array}$$

 \mathcal{L}_{B145}

 \mathbb{L}_{B146}

$$\begin{array}{c} D \\ D \\ CD_3 \end{array}$$

$$L_{B150}$$

 \mathbb{L}_{B151}

 L_{B147}

 L_{B148}

$$L_{B152}$$

 \mathcal{L}_{B153}

-continued
$$L_{B157}$$

 L_{B154}

$$\bigcup_{D}^{D}$$

$$\bigcup_{CD_{3}}$$

$$L_{B158}$$
 CD_3

 \mathcal{L}_{B155}

$$\bigcap_{D} \bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N$$

 \mathbb{L}_{B159}

 \mathbb{L}_{B160}

 L_{B156}

L_{B161}

$$L_{B162}$$

$$L_{B163}$$

$$L_{B168}$$

$$\mathcal{L}_{B170}$$

$$D_3C$$
 CD_3

$$L_{B171}$$

$$L_{B175}$$

$$L_{B176}$$

$$L_{B177}$$

$$L_{B179}$$

$$L_{B183}$$

 \mathcal{L}_{B189}

-continued

 CD_3

$$\begin{array}{c} L_{B185} \\ \\ D_{3}C \\ \\ \end{array}$$

$$L_{B186}$$

$$L_{B187}$$

 \mathbb{L}_{B188}

$$D_3C$$
 D_3C
 D_3C

$$L_{B190}$$

$$L_{B191}$$

$$L_{B192}$$

L_{B193}

$$L_{B195}$$

$$L_{B196}$$

$$L_{B197}$$

$$\begin{array}{c} \text{CD}_3 \\ \text{CD}_3 \\ \text{CD}_3 \end{array}$$

$$L_{B199}$$
 CD_3
 CD_3
 CD_3

L_{E202}

 \mathcal{L}_{B206}

 L_{B207}

$$D_{3}C$$

$$L_{B209}$$

$$L_{B210}$$
 CD_3
 CD_3

$$L_{B213}$$

$$L_{B214}$$

$$L_{B216}$$

$$L_{B220}$$

D₃C CD₃

 L_{B222} D_3C N

 $\begin{array}{c} CD_3 \\ \\ N \\ \\ CD_3 \end{array}$

 \mathcal{L}_{B224}

$$D_3C$$
 CD_3
 N
 CD_3

-continued

 L_{B225} $D_{3}C$ N CD_{3} CD_{3}

 L_{B226}

Leave Leave

L_{B229}

$$L_{B231}$$

$$L_{B233}$$
 D_3C

$$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C} \end{array}$$

$$D_3C$$
 D_3C
 D_3C
 D_3C

$$\begin{array}{c} L_{B237} \\ D_3C \\ \\ \end{array}$$

$$\begin{array}{c} L_{B238} \\ D_{3}C \\ \end{array}$$

 \mathbb{L}_{B243}

 \mathcal{L}_{B239}

$$L_{B240}$$

$$L_{B241}$$

 \mathbb{L}_{B242}

$$N$$
 CD_3

$$D_3C$$
 N
 CD_3

$$L_{B244}$$

 \mathbb{L}_{B245}

$$L_{B247}$$

$$D_3C$$

$$L_{B251}$$

$$L_{B252}$$
 D_3C
 CD_3
 L_{B253}

 \mathcal{L}_{B254}

-continued

$$N$$
 CD_3

 \mathcal{L}_{B255}

$$CD_3$$
 CD_3
 CD_3

 \mathcal{L}_{B256}

 \mathcal{L}_{B257}

 \mathbb{L}_{B258}

 \mathbb{L}_{B259}

 \mathbb{L}_{B260}

 L_{B261}

L_{B262}

$$L_{B264}$$

 L_{B265}

$$D_3C$$

$$L_{B266}$$
 D_3C
 CD_3

$$\begin{array}{c} L_{B267} \\ \\ CD_3 \\ \\ \\ D_3C \\ \end{array}$$

$$L_{B270}$$
 $D_{3}C$
 CD_{3}

 L_{B271}

$$L_{B272}$$
 $D_{3}C$
 CD_{3}
 $D_{3}C$
 CD_{3}

$$L_{B277}$$
 N
 D_3C
 CD_3

$$L_{B282}$$
 $D_{3}C$
 CD_{3}

 \mathcal{L}_{B292}

-continued

L_{B291}

\

L_{B293}

L_{B294}

-continued

L_{B297}

$$L_{B299}$$
 D_3C

 L_{R300}

[0118] According to another aspect of the present disclosure, an OLED is also provided. The OLED includes an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer may include a host and a phosphorescent dopant. The organic layer can include a compound comprising a first ligand L_A , and its variations as described herein.

[0119] In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes

[0120] In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.

[0121] In one embodiment, the consumer product is selected from the group consisting of a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, and a sign.

[0122] In some embodiments, the present invention relates to an emissive region or an emissive layer. The emissive region or emissive layer can include a compound of the present invention. In one embodiment, the compound of the present invention is an emissive dopant or a non-emissive dopant.

[0123] In some embodiments of the emissive region, the emissive region further comprises a host, wherein the host

comprises at least one selected from the group consisting of metal complex, triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, aza-triphenylene, aza-carbazole, aza-dibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.

[0124] In some embodiment of the emissive region, the emissive region further comprises a host, wherein the host is selected from the group consisting of:

and combinations thereof.

[0125] In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.

[0126] According to another aspect, a formulation comprising the compound described herein is also disclosed.

[0127] The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.

[0128] The organic layer can also include a host. In some embodiments, two or more hosts are preferred. In some embodiments, the hosts used maybe a) bipolar, b) electron transporting, c) hole transporting or d) wide band gap materials that play little role in charge transport. In some embodiments, the host can include a metal complex. The host can be a triphenylene containing benzo-fused thiophene or benzo-fused furan. Any substituent in the host can be an unfused substituent independently selected from the group consisting of C_nH_{2n+1} , OC_nH_{2n+1} , OAr_1 , $N(C_nH_{2n+1})_2$, $N(Ar_1)(Ar_2)$, $CH = CH - C_nH_{2n+1}$, $C = C - C_nH_{2n+1}$, Ar_1 , Ar_1 — Ar_2 , and C_nH_{2n} — Ar_1 , or the host has no substitutions. In the preceding substituents n can range from 1 to 10; and Ar₁ and Ar₂ can be independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof. The host can be an inorganic compound. For example, a Zn containing inorganic material e.g. ZnS.

[0129] The host can be a compound comprising at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, azadibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene. The host can include a metal complex. The host can be, but is not limited to, a specific compound selected from the group consisting of:

and combinations thereof.

Additional information on possible hosts is provided below. **[0130]** In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, and an electron transport layer material, disclosed herein. Combination with Other Materials

[0131] The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

Conductivity Dopants:

[0132] A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.

[0133] Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804 and US2012146012.

HIL/HTL:

[0134] A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphoric acid and silane derivatives; a metal oxide derivative, such as MoO_x; a p-type semiconducting organic compound, such as 1,4,5, 8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

[0135] Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:

$$Ar^{2}$$
 Ar^{3}
 Ar^{2}
 Ar^{4}
 Ar^{4}
 Ar^{4}
 Ar^{4}
 Ar^{5}
 Ar^{5}
 Ar^{5}
 Ar^{6}
 Ar^{6}

-continued

$$Ar^2$$
 Ar^3
 Ar^4
 Ar^5
 Ar^5
 Ar^6
 Ar^7
 Ar^4
 Ar^8
 Ar^5
 Ar^5
 Ar^5
 Ar^5
 Ar^5
 Ar^6
 Ar^7
 Ar^8
 Ar^7
 Ar^8
 Ar^8
 Ar^8

[0136] Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0137] In one aspect, Ar^1 to Ar^9 is independently selected from the group consisting of:

wherein k is an integer from 1 to 20; X^{101} to X^{108} is C (including CH) or N; Z^{101} is NAr¹, O, or S; Ar¹ has the same group defined above.

[0138] Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:

$$\begin{bmatrix} Y^{101} \\ Y^{102} \end{bmatrix}_{k'} N - Met - (L^{101})k''$$

wherein Met is a metal, which can have an atomic weight greater than 40; $(Y^{101} - Y^{102})$ is a bidentate ligand, Y^{101} and Y^{102} are independently selected from C, N, O, P, and S; L^{101} is an ancillary ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal.

[0139] In one aspect, $(Y^{101} - Y^{102})$ is a 2-phenylpyridine derivative. In another aspect, $(Y^{101} - Y^{102})$ is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc⁺/Fc couple less than about 0.6 V.

[0140] Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382. EP2660300. EP650955. JP07-073529. JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898. KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938. US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. No. 5,061,569, U.S. Pat. No. 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014030872, WO2014015935, WO2014015937, WO2014030921, WO2014034791, WO2014104514, WO2014157018.

EBL:

[0141] An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.

Host:

[0142] The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.

[0143] Examples of metal complexes used as host are preferred to have the following general formula:

$$\begin{bmatrix} Y^{103} \\ Y^{104} \end{bmatrix}_{\nu} N - Met - (L^{101})k''$$

wherein Met is a metal; $(Y^{103} - Y^{104})$) is a bidentate ligand, Y^{103} and Y^{104} are independently selected from C, N, O, P, and S; L^{101} is an another ligand; k' is an integer value from

1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal.

[0144] In one aspect, the metal complexes are:

$$\begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{\nu} Al - (L^{101})_{3-k'} \quad \begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{\nu} Zn - (L^{101})_{2-k'}$$

wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.

[0145] In another aspect, Met is selected from Ir and Pt. In a further aspect, $(Y^{103} - Y^{104})$ is a carbene ligand.

[0146] Examples of other organic compounds used as host are selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, cluysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole. benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit

and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0147] In one aspect, the host compound contains at least one of the following groups in the molecule:

-continued
$$x_{102}^{102}$$
 x_{103}^{104} x_{104}^{105} x_{105}^{106} x_{106}^{107} x_{107}^{108} x_{107}^{108} x_{107}^{108} x_{107}^{108} x_{107}^{108} x_{107}^{108} x_{107}^{108} x_{107}^{108}

wherein each of R^{101} to R^{107} is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20; k''' is an integer from 0 to 20. X^{101} to X^{108} is selected from C (including CH) or N. Z^{101} and Z^{102} is selected from NR¹⁰¹, O, or S.

[0148] Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644. KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919. US20060280965, US20090017330. US20090030202, US20090167162, US20090302743, US20090309488. US20100012931. US20100084966. US20100187984. US2010187984. US2012075273. US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898,

WO2009021126, WO2009066779, WO2010107244,

WO2009063833, WO2009086028, WO2011081423, WO2009066778, WO2010056066, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472,

Additional Emitters:

[0149] One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.

[0150] Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656. US20030068526, US20030072964. US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696. US20060134459. US20060134462. US20060202194, US20060251923, US20070034863, US20070087321. US20070103060. US20070111026, US20070190359, US20070231600, US2007034863, US2007104979. US2007104980. US2007138437. US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100244004, US20100148663, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US20140246656, US2013181190, US2013334521, US2014103305, U.S. Pat. No. 6,303,238, U.S. Pat. No. 6,413,656, U.S. Pat. No. 6,653,654, U.S. Pat. No. 6,670,645, U.S. Pat. No. 6,687,266, U.S. Pat. No. 6,835,469, U.S. Pat. No. 6,921,915, U.S. Pat. No. 7,279,704, U.S. Pat. No. 7,332,232, U.S. Pat. No. 7,378,162, U.S. Pat. No. 7,534,505, U.S. Pat. No. 7,675,228, U.S. Pat. No. 7,728,137, U.S. Pat. No. 7,740,957, U.S. Pat. No. 7,759,489, U.S. Pat. No. 7,951,947, U.S. Pat. No. 8,067,099, U.S. Pat. No. 8,592,586, U.S. Pat. No. 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970. WO2002015645, WO07115981, WO08035571, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842. WO2009000673. WO2009050281. WO2009100991. WO2010028151. WO2010054731. WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2013107487, WO2012163471, WO2013094620, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.

$$Et$$
 N
 N
 Et
 N
 $Re(CO)_{4}$

HBL:

[0151] A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the

HBL material has a lower HOMO (further from the vacuum level) and or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and or higher triplet energy than one or more of the hosts closest to the HBL interface.

[0152] In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.

[0153] In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

$$\begin{array}{c|c}
F & F \\
F & F
\end{array}$$

$$\begin{array}{c|c}
N & N & N
\end{array}$$

$$\begin{array}{c|c}
N & Al & (L^{101})_{3-k'}
\end{array}$$

wherein k is an integer from 1 to 20; L^{101} is an another ligand, k' is an integer from 1 to 3.

ETL:

[0154] Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

[0155] In one aspect, compound used in ETL contains at least one of the following groups in the molecule:

-continued
$$X^{101}$$
 X^{102}
 X^{103}
 X^{104}
 X^{105}
 X^{106}

$$X^{10}$$
 X^{101}
 X^{108}
 X^{107}
 X^{108}
 X^{107}
 X^{108}
 X^{107}
 X^{108}
 X^{108}
 X^{108}
 X^{108}
 X^{108}
 X^{108}
 X^{108}

$$Ar^{3}$$

$$Ar^{3}$$

wherein R^{101} is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, myloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. $Ar^1\ to\ Ar^3\ has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. <math display="inline">X^{101}\ to\ X^{108}$ is selected from C (including CH) or N.

[0156] In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

$$\begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{k} Al \longrightarrow (L^{101})_{3.k'} \quad \begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{k'} Be \longrightarrow (L^{101})_{2.k'} \\ \begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{k'} Zn \longrightarrow (L^{101})_{2.k'} \quad \begin{bmatrix} N \\ N \end{bmatrix}_{k'} Zn \longrightarrow (L^{101})_{2.k'} \end{bmatrix}$$

wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L¹⁰¹ is another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

[0157] Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155. US20090101870, US20090115316, US20090140637, US20090179554. US2009218940,

US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. No. 6,656,612, U.S. Pat. No. 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,

Charge Generation Layer (CGL)

[0158] In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an

n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.

[0159] In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.

Experimental

[0160]

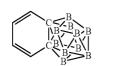
Calculation results*								
Entry	Structure	Cpd. #	Ti	Si	НОМО	LUMO		
1.	N B B B	$IrL_{43}(L_{B2})_2$, Compound $B602$	743	604	-5.266	-2.464		
2.		Comparison example for Compound B602	620	499	-5.12	-1.937		
3.	B B B B B B B B B B B B B B B B B B B	$IrL_{A10}(L_{B2})_2$, Compound B2702	742	583	-5.373	-2.518		

-continued									
	Calculation results*								
Entry	Structure	Cpd. #	Ti	Si	НОМО	LUMO			
4.	In the second se	Comparison example for Compound B2702	587	466	-5.158	-1.878			
5.	Ir CBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	$IrL_{A45}(L_{B2})_2$, Compound B13202	514	473	-5.289	-1.874			
6.		Comparative example for compound Compound B13202	594	459	-5.093	-1.688			
7.	In Control of the second of th	${\rm IrL}_{A145}({\rm L}_{B2})_2$, Compound B43202	488	435	-5.295	-1.715			

	Commune							
	Calculation results*							
Entry	Structure	Cpd. #	Ti	Si	НОМО	LUMO		
8.		Comparative example Compound B43202	510	435	-5.164	-1.58		
9.		$IrL_{A62}(L_{C5})_2$, Compound C1042	1716	760	-5.455	-3.166		

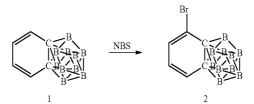
Calculation results*									
Entry	Structure	Cpd. #	Ti	Si	НОМО	LUMO			
12.		Comparison example for Compound C1076	562	448	-5.357	-1.904			

^{*}Results were obtained with DFT B3LYP functional, CEP-31G basis set, using TDDFT at the optimized ground state geometry


DISCUSSION

[0161] Based on the DFT calculations of carborane containing dopants versus their phenyl counterparts; a clear trend is seen wherein the carborane moiety is more electron withdrawing than its phenyl counterpart. For example, a comparison of a compound having a carborane moiety as part of the cyclometalated ring system (Entry 5; $IrL_{A45}(L_{B2})_2$) versus a compound wherein the carborane is replaced with a phenyl group (Entry 6; comparative example $IrL_{A45}(L_{B2})_2$), the HOMO level changes from -5.289 V to -5.093 V. As a result of the deeper HOMO of $IrL_{A45}(L_{B2})_2$, the compound was calculated to have higher energy emission profile than its phenyl counterpart (514 nm vs. 594 nm). Therefore, the carborane moiety can be a powerful tool in dopant design that leads to a blue shift in the resulting compound when it is part of the cyclometalated ring system.

[0162] On the other hand, when a carborane moiety is part of the LUMO side of the iridium complexes, the electron deficient nature of carborane makes the compound easier to be reduced. For example, comparing compound ${\rm IrL}_{A3}({\rm L}_{B2})_2$ (Entry 1) with comparative example ${\rm IrL}_{A3}({\rm L}_{B2})_2$ (Entry 2), shows a change in the LUMO level from -2.464 V to -1.937 V. As a result of the more reducible LUMO of the complex, compound B602 was calculated to have a lower energy emission profile than its phenyl counterpart (743 nm vs. 620 nm). Therefore, the carborane moiety can be a powerful tool in dopant design that leads to a red shift in the resulting compound when it is part of the LUMO moiety.


[0163] Synthesis of Compounds $IrL_{A45}(L_{B2})_2$ and $IrL_{A145}(L_{B2})_2$

[0164] Synthesis of L_{A45}

1

rials for Optical and Electronic Devices 2:232-239; which is incorporated by reference herein in its entirety.

[0166] Bicyclic carborane 1 is dissolved in DMF and cooled in an ice bath. NBS (1.1 eq.) is added portion wise, the reaction mixture is allowed to warm up to room temperature and stirred overnight. Then, the mixture is diluted with brine and extracted with ethyl acetate. The organic fractions are combined, dried over sodium sulfate, filtered, and concentrated, providing solid brominated compound 2.

[0165] Starting material 1 is prepared according to Marshall et al., 2014, Journal of Materials Chemistry C: Mate-

[0167] Bromide 2 (1 eq.), 4,4,4',4',5,5,5',5'-octamethyl-2, 2'-bi(1,3,2-dioxaborolane) (2 eq.), potassium acetate (3 eq.), tris(dibenzylideneacetone)dipalladium(0) (2 mol. %), and SPhos (8 mol. %) are suspended in dry dioxane under nitrogen and are heated to reflux for 16 h. The reaction mixture is filtered through a celite plug and evaporated. The crude material is subjected to column chromatography on a silica gel column, and eluted with a heptanes/ethyl acetate gradient mixture, providing pure intermediate 3.

[0168] Intermediate 3 (1 eq.), 2-bromo-4-methylpyridine (1.3 eq.), potassium carbonate (3 eq.), and tetrakis(triphenylphosphine)palladium(0) (3 mol. %) are suspended in toluene/water mixture. The reaction mixture is degassed and heated to reflux under nitrogen for 16 h. The organic fraction is separated and evaporated. The residue is subjected to column chromatography on a silica gel column, providing pure ligand L_{A45} .

[0169] Synthesis of L_{A145} Ligand

CI

CH2C12; Na2CO3

18 W UV lamp

$$\lambda = 365 \text{ nm}$$

CI

CI

CI

CI

B

B

B

CI

CI

B

B

B

B

A

[0170] Starting material 4 is prepared according to Ni et al., 2017, Angew. Chem. Int. Ed. 56:712-716, which is incorporated by reference herein in its entirety.

[0171] Bromide 4 (1 eq.), 4,4,4',4',5,5,5',5'-octamethyl-2, 2'-bi(1,3,2-dioxaborolane) (2 eq.), potassium acetate (3 eq.), tris(dibenzylideneacetone)dipalladium(0) (2 mol. %), and SPhos (8 mol. %) are suspended in dry dioxane under nitrogen and are heated to reflux for 16 h. The reaction mixture is filtered through a celite plug and evaporated. The crude material is subjected to column chromatography on a silica gel column and eluted with a heptanes/ethyl acetate gradient mixture, providing pure intermediate 5.

 L_{A145}

[0172] Intermediate 5 (1 eq.), 2-bromo-4-methylpyridine (1.3 eq.), potassium carbonate (3 eq.), and tetrakis(triphenylphosphine)palladium(0) (3 mol. %) are suspended in a toluene/water mixture. The reaction mixture is degassed and heated to reflux under nitrogen for 16 h. The organic fraction is separated and evaporated. The residue is subjected to column chromatography on a silica gel column, providing pure ligand L_{A145} .

times) and with hexane (3-4 times). The filtrate is discarded. The celite/silica plug is then washed with dichloromethane to elute the product. The crude product is chromatographed on silica gel with a heptanes/DCM gradient mixture to yield pure $IrL_{A45}(L_{B2})_2$.

[0175] Compound B43202 $IrL_{A145}(L_{B2})_2$ is prepared by the same method:

[0173] Synthesis of Compound 13202 $IrL_{A45}(L_{B2})_2$ [0174] A mixture of iridium trifluormethanesulfonate complex (1 eq.) and 2,4-diphenylpyridine (3 eq.) in EtOH (30 ml) and MeOH (30 ml) is refluxed for 20 h under an inert atmosphere. The reaction mixture is cooled to room temperature, diluted with ethanol, combined with celite, and is then stirred for 10 min. The mixture is filtered on a small silica gel plug on a frit and is washed with ethanol (3-4)

Compound B13202

[0176] It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments

Compound B43202

described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

1. A compound comprising a first ligand L_A having the Formula:

Formula I

wherein rings A and B are each a 5- or 6-membered cathocyclic or heterocyclic ring;

wherein each R^A and R^B independently represents mono to the maximum possible number of substitution, or no substitution.

wherein Z^1 and Z^2 are each independently selected from the group consisting of carbon or nitrogen;

wherein each R^A and R^B is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, a boron containing group, and combinations thereof:

wherein any adjacent substituents are optionally joined or fused to form a ring;

wherein (1) at least one R^A or R^B comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^A or one pair of two adjacent R^B form a first group fused to ring A or B;

wherein the first group including the fused edge is a closo-carborane having a formula of $C_2B_nH_n$;

wherein n is an integer of 3 to 10;

wherein the closo-carborane can be further substituted; wherein the ligand L_A is coordinated to a metal M;

wherein the metal M can be coordinated to other ligands;

wherein the ligand L_A is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

2. The compound of claim 1, wherein M is selected from the group consisting of Ir, Rh, Re, Ru, Os, Pt, Au, and Cu.

3.-5. (canceled)

- 6. The compound of claim 1, wherein n is 10.
- 7. The compound of claim 1, wherein one of Z^1 and Z^2 is nitrogen, and one of Z^1 and Z^2 is carbon.
- **8**. The compound of claim **1**, wherein ring A is selected from the group consisting of pyridine, pyrimidine, imidazole, imidazole-derived carbene, and pyrazole, and ring B is benzene.

9.-10. (canceled)

11. The compound of claim 1, wherein at least one R^A or R^B comprises an aromatic group further fused by the first group, and this R^A or R^B joins with an adjacent substituent to form a ring that is fused to ring A or B.

12. The compound of claim 1, wherein ligand L_A is selected from the group consisting of:

-continued

$$R^{b}$$
 $Y^{2} = Y^{1}$
 X^{3}
 Y^{4}
 Y^{3}
 Y^{4}
 Y^{5}
 Y^{6}
 Y^{7}
 Y^{8}
 Y^{9}
 Y^{11}
 $Y^{9} = Y^{10}$
 Y^{11}
 Y^{12}
 Y^{12}
 Y^{12}
 Y^{12}
 Y^{12}
 Y^{12}
 Y^{12}
 Y^{12}
 Y^{11}
 Y^{1

wherein each Y^1 to Y^{13} are independently selected from the group consisting of carbon and nitrogen;

wherein Y' is selected from the group consisting of BR^e, NR^e, PR^e, O, S, Se, C=O, S=O, SO₂, CR^eR^f, SiR^eR^f, and GeR^eR^f:

wherein R^e and R^f are optionally fused or joined to form a ring;

wherein each R^a, R^b, R^c, and R^d may independently represent from mono substitution to the maximum possible number of substitution, or no substitution;

wherein R^a, R^b, R^c, R^d, R^e and R^f are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

wherein any two adjacent substituents of R^a, R^b, R^c, and R^d are optionally fused or joined to form a ring or to form a multidentate ligand; and

wherein (1) at least one of R^a , R^b , R^c , R^d , R^e and R^f comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^a , two adjacent R^b , two adjacent R^c , or two adjacent R^d form a first group fused to the ring they attach thereto.

13. The compound of claim 12, wherein ligand L_A is selected from the group consisting of:

$$\mathbb{R}^a$$
 \mathbb{R}^b
 \mathbb{R}^b
 \mathbb{R}^b

14. The compound of claim 1, wherein the first group is selected from the group consisting of:

wherein the atoms with * represent the fused edge.

15. (canceled)

16. The compound of claim 1, wherein ligand L_A is selected from the group consisting of:

$$\begin{array}{c} L_{A} \text{ 1a-1-1} \\ H_{n}B_{n} \bigcirc \bigcap_{i=1}^{C_{4}} \bigcap_{i=1}^{S_{4}} \bigcap_{i=1}^{R_{d'}} \bigcap_{$$

 $L_A~1a\text{-}1\text{-}2$

$$\mathbb{R}^{b'}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{b}$$

$$\mathbb{R}^{d'} \frac{\parallel^4}{\parallel_3} \stackrel{5}{\stackrel{6}{\stackrel{6}{\longrightarrow}}} \stackrel{1}{\parallel_3}$$

$$H_nB_{n-1} \bigcirc \begin{matrix} B \\ C \\ R^{b'} \end{matrix}$$

$$R^{a'}$$

$$H_nB_{n-1} \bigcirc \begin{bmatrix} B_4 & 5 & 6 \\ C_3 & 2 & 1 \\ N & N & N \end{bmatrix}$$

$$\mathrm{L}_{A} \ 1\mathrm{a}\text{-}1\text{-}5$$

$$L_A$$
 1a-2-4

 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$

L_A 1a-2-5

 L_A 2a-1-1

$$H_{\eta}B_{\eta-1}$$

$$\bigcup_{B^3}^{C_4} \bigcup_{\delta}^{\delta}$$

$$R^{b'}$$

$$R^{a'}$$

$$R$$

$$H_{\eta}B_{\eta-2}$$

$$B_{\eta}^{3}$$

$$B$$

$$R^{d}$$
 C
 $H_{n}B_{n}$
 $R^{b'}$

$$\mathbb{R}^{a'}$$

$$H_nB_n$$
 C
 C
 R^b

-continued
$$L_{A} \text{ 1a-2-2}$$

$$R^{b'} \xrightarrow{3} C C_{4}$$

$$H_{n}B_{n}$$

$$L_A$$
 1a-2-3
$$L_B = \frac{R^{a'}}{3}$$

$$L_B = \frac{R^{a'}}{3}$$

$$\begin{array}{c} L_{\mathcal{A}} \text{ 2a-1-2} \\ H_{\mathcal{B}} B_{\mathcal{B}} \bigcirc C \\ \\ R^{\mathcal{B}} \stackrel{\text{}}{=} \\ \end{array},$$

$$L_A$$
 2a-1-3 $R^{a'}$

$$L_A$$
 3a-1-1

 $R_n B_n \bigcirc C$
 N
 N

$$L_A$$
 3a-1-2 $R^{a'}$

$$\mathbb{R}^{a'}$$
 C $\mathbb{Q}^{\mathbb{B}_n\mathbb{H}_n}$ $\mathbb{R}^{a'}$ $\mathbb{Q}^{\mathbb{Q}}$ $\mathbb{Q}^{\mathbb{Q}}$

$$L_A$$
 3a-2-1

 $R^{a'}$
 R_B
 $R^{b'}$

$$R^{a'}$$
, $R^{a'}$, $R^{b'}$

$$L_A$$
 5a-1-2

 $R^{c'}$
 N
 N
 $R^{b'}$

 $L_{A} \, 5a\text{-}1\text{-}3$ HnBn $R^{b'}$

$$R^{a'}$$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$

$$L_A$$
 6a-1-1

 $R^{e'}$
 $R^{b'}$
 $R^{b'}$

$$\begin{array}{c} L_A \text{ 6a-2-1} \\ \\ R^{c'} \\ \\ \end{array}$$

$$\begin{array}{c} L_A \text{ 6a-3-1} \\ \\ R^{a'} \\ \\ \\ R^{b'} \\ \\ \\ \end{array}$$

$$R^{e'}$$
 $R^{e'}$
 $R^{b'}$
 $R^{b'}$

HnBn
$$\mathbb{R}^{a'}$$
 $\mathbb{R}^{a'}$ $\mathbb{R}^{a'}$ $\mathbb{R}^{b'}$

$$L_{A} 7a-1-3$$

$$R^{e'}$$

$$N$$

$$N$$

$$R^{b'}$$

BnHn
$$R^{a'}$$
 A_{a}
 $A_{b'}$
 A_{a}
 $A_{$

BnHn $R^{a'}$ $R^{a'}$ $R^{b'}$

$$\begin{array}{c} L_A \text{ 8a-2-1} \\ \\ R^{b'} \end{array}$$

$$R^{e'}$$
 $R^{b'}$
 $R^{b'}$

$$\begin{array}{c} L_{A} \text{ 8a-2-3} \\ \\ R^{c'} \\ \\ \\ BnHn \end{array}$$

BnHn
$$\mathbb{R}^{a'}$$
 $\mathbb{R}^{b'}$

$$\begin{array}{c} L_A \, 9 \text{a-}1\text{-}2 \\ \\ R^{a'} \\ \\ R^{b'} \\ \\ R^{c'} \end{array}$$

$$\begin{array}{c} L_{A} \text{ 9a-2-1} \\ \\ R^{a'} \\ \\ R^{b'} \end{array}$$

$$L_{A} \text{ 9a-2-2}$$

$$R^{a'}$$

$$R^{b'}$$

$$L_A$$
 10a-2-1

 $R^{a'}$
 $R^{a'}$

$$L_{A}$$
 10a-3-1

L_A 10a-4-1

$$\begin{array}{c} \mathbb{R}^{a'} \\ \mathbb{R}^{a'} \\ \mathbb{R}^{a'} \\ \mathbb{R}^{b'} \\ \mathbb{R}^{b'} \end{array}$$

L_A 11a-1-1

$$H_{\rm n}$$

$$L_A \, 11 \, \text{a-}2 \cdot 1$$

$$R^{a'}$$

$$R^{$$

-continued

$$L_{A}$$
 11a-3-1

 $R^{a'}$
 $R^{b'}$
 $R^{b'}$

 L_A 11a-4-1 $R^{b'}$ $R^{b'}$ $R^{b'}$ $R^{b'}$ $R^{b'}$

$$\begin{array}{c} L_{\mathcal{A}} \ 12a\text{-}1\text{-}1 \\ \\ R^{b'} \\ \\ B_{n} \\ \\ H_{n} \end{array}$$

$$R^{a'}$$

$$L_{A} 12a-2-1$$

$$R^{a'}$$

$$R^{$$

 $\mathbb{R}^{c'}$

 L_{Ai} , i

-continued

 $L_A 12a-3-1$

 $R^{a'}$

 $R^{b'}$

$$R^{b'}$$

Bn-1Hn

 $R^{b'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{a'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$
 $R^{b'}$

wherein each $R^{a'}$, $R^{b'}$, and $R^{c'}$ may independently represent from mono substitution to the maximum possible number of substitution, or no substitution;

wherein $R^{a'}$, $R^{b'}$, and $R^{c'}$ are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

wherein any two adjacent substituents of $R^{a'}$, $R^{b'}$, and $R^{c'}$ are optionally fused or joined to form a ring or to form a multidentate ligand.

17. The compound of claim 16, wherein ligand L_A is selected from the group consisting of:

L_{Ai} , i	L_A type	$R^{a'}$	$R^{b'}$	$R^{c'}$
1.	1a-1-1	Н	Н	_
2.	1a-1-1	5-Me	H	_
3.	1a-1-1	5-CD ₃	H	_
4.	1a-1-1	5-iPr	Н	_
5.	1a-1-1	5-CD ₂ CHMe ₂	H	_
6.	1a-1-1	5-CDMe ₂	Н	_
7.	1a-1-1	5-iPr	4-CD ₃	_
8.	1a-1-1	5-CD ₂ CHMe ₂	4-CD ₃	_
9.	1a-1-1	5-CDMe ₂	4-CD ₃	_
10.	1a-1-2	Η	Н	_
11.	1a-1-2	3-Me	Н	_
12.	1a-1-2	3-CD ₃	Н	_
13.	1a-1-2	3-iPr	H	_
14.	1a-1-2	3-CD ₂ CHMe ₂	Н	_
15.	1a-1-2	3-CDMe ₂	H	_
16.	1a-1-2	3-iPr	4-CD ₃	_
17.	1a-1-2	3-CD ₂ CHMe ₂	4-CD ₂	_

Aυ	A 71			
10	1.12	2 CDM-	4.CD	
18.	1a-1-2	3-CDMe ₂	$4-CD_3$	
19.	1a-1-2	H	$4-CD_3$	_
20.	1a-1-2	3-Me	4-CD ₃	_
21.	1a-1-2	$3-CD_3$	$4-CD_3$	_
22.	1a-1-3	H	H	
23.	1a-1-3	4-Me	Н	_
				_
24.	1a-1-3	$4-CD_3$	H	_
25.	1a-1-3	4-iPr	H	_
26.	1a-1-3	4-CD ₂ CHMe ₂	Н	
				_
27.	1a-1-3	4 -CDMe $_2$	$_{ m H}$	_
28.	1a-1-3	4-iPr	$4-CD_3$	_
29.	1a-1-3		4-CD ₃	
		4-CD ₂ CHMe ₂		
30.	1a-1-3	4 -CDMe $_2$	$4-CD_3$	_
31.	1a-1-3	CD3	CD3	
32.	1a-1-4	Н	Н	_
33.	1a-1-5	H	Η	_
34.	1a-1-6	H	H	_
		H		
35.	1a-2-1		Η	_
36.	1a-2-1	4-CH ₃	Η	_
37.	1a-2-1	5-CH ₃	H	_
38.	1a-2-1	$4-CD_3$	Н	_
39.	1a-2-1	5-CD ₃	H	_
40.	1a-2-1	$4.5-(CD_3)_2$	H	
41.	1a-2-1	4-CD ₂ CHMe ₂	Η	_
42.	1a-2-1	5-CD ₂ CHMe ₂	Η	_
43.	1a-2-1	4-cyclohexyl	Н	
				_
44.	1a-2-1	5-cyclohexyl	$_{ m H}$	_
45.	1a-2-1	4-CH ₃	4-CH ₃	_
46.	1a-2-2	Н	Н	_
47.	1a-2-2	4-CH ₃	Η	_
48.	1a-2-2	5-CH ₃	2-Me	
49.	1a-2-2		Н	_
		$4-CD_3$		
50.	1a-2-2	$5-CD_3$	2-Me	_
51.	1a-2-2	$4,5-(CD_3)_2$	H	
52.	1a-2-2		H	
		4-CD ₂ CHMe ₂		_
53.	1a-2-2	5-CD ₂ CHMe ₂	Η	_
54.	1a-2-2	4-cyclohexyl	$_{ m H}$	_
				_
55.	1a-2-2	4-cyclohexyl	2-Me	
56.	1a-2-2	4-cyclopentyl	H	_
57.	1a-2-2	4-cyclopentyl	2-Me	_
58.	1a-2-3			
		Н	Н	_
59.	1a-2-4	H	H	_
60.	1a-2-5	H	H	_
61.	2a-1-1	Н	Η	_
62.	2a-1-2	H	H	_
63.	2a-1-3	H	H	_
64.	3a-1-1	Н	Η	_
65.	3a-1-2	H	Η	_
66.	3a-1-3	H	H	_
67.	3a-2-1	Н	Н	_
68.	3a-2-2	H	H	_
69.	4a-2-3	H	H	_
	5a-1-1			Н
70.		H	H	
71.	5a-1-1	H	H	$2,6-(CH_3)_2$
72.	5a-1-1	H	H	$2,6-(CD_3)_2$
73.	5a-1-1	H	H	2,6-(iPr) ₂
74.	5a-1-1	H	H	$2,6-(CDMe_2)_2$
75.	5a-1-1	H	4-Me	H
76.	5a-1-1	H	4-Me	2,6-(CH ₃) ₂
77.	5a-1-1	Η	4-Me	$2,6-(CD_3)_2$
78.	5a-1-1	H	4-Me	$2,6-(iPr)_2$
79.	5a-1-1	Н	4-Me	$2,6-(CDMe_2)_2$
80.	5a-1-1	H	$4-CD_3$	2,6-(CH ₃) ₂
81.	5a-1-1	Н	4-CD ₃	2,6-(CD ₃) ₂
82.	5a-1-1	H	$4-CD_3$	$2,6-(iPr)_2$
83.	5a-1-1	Н	4-CD ₂	2,6-(CDMe ₂) ₂
			3	
84.	5a-1-2	Η	H	H
85.	5a-1-3	H	H	$2,6-(CD_3)_2$
86.	5a-2-1	Н	Н	$2,6-(CD_3)_2$
87.	5a-2-1	H	$_{ m H}$	$2,6-(CD_3)_2$
88.	5a-2-1	H	Н	2,6-(CD ₃) ₂
89.	5a-2-1	Н	Η	$2,6-(CD_3)_2$
90.	5a-2-1	H	Н	2,6-(CD ₃) ₂
91.	5a-2-1	Н	4-Me	$2,6-(CD_3)_2$

-continued

92. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 93. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 94. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 95. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 96. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 97. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 98. 5a-2-2 H H 4-CD ₃ 2,6-(CD ₃) ₂ 98. 5a-2-2 H H 2-CD ₃ 2,6-(CD ₃) ₂ 100. 5a-2-2 H H 2,6-(iPr) ₂ 101. 5a-2-2 H H 2,6-(iPr) ₂ 102. 5a-2-2 H H 2,6-(iPr) ₂ 103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H H 111. 7a-1-3 CD ₃ H H H 112. 7a-1-3 Me H H H 113. 7a-1-3 Ph H H H 114. 7a-1-3 CD ₃ H H H 115. 8a-1-1 H H H H 116. 8a-1-1 H H H H 117. 8a-1-1 H H H H H 118. 8a-1-1 H H H H H 119. 8a-1-1 H H H H H 110. 7a-CPl ₃ 117. 8a-1-1 H H H H H 118. 8a-1-1 H H H H H H 119. 8a-1-2 H H H H H H 110. 8a-1-2 H H H H H H 110. 8a-1-2 H H H H H H H 110. 8a-1-2 H H H H H H H H 110. 8a-1-1 H H H H H H H H H 110. 8a-1-1 H H H H H H H H H H H H H H H H H H	т :	T true	$R^{a'}$	R ^{b'}	R ^{c'}
93. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 94. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 95. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 96. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 97. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 98. 5a-2-2 H H H 2,6-(CD ₃) ₂ 100. 5a-2-2 H H 2,6-(CD ₃) ₂ 101. 5a-2-2 H H 2,6-(CD ₃) ₂ 102. 5a-2-2 H H 2,6-(CD ₃) ₂ 103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 105. 6a-3-1 H H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H H 109. 7a-1-2 Me H H H 110. 7a-1-2 CD ₃ H H H 111. 7a-1-2 CD ₃ H H H 111. 7a-1-3 Me H H H 111. 7a-1-3 Me H H H 111. 7a-1-3 Ph H H H 11. 7a-1-3 Ph H H H H 11. 7a-1-3 Ph H H H H H H H H H H H H H H H H H H	L_{Ai} , i	L_A type	K	K	K
94. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 95. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 96. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 97. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 98. 5a-2-2 H 4-CD ₃ 2,6-(CD ₃) ₂ 99. 5a-2-2 H H 2,6-(CD ₃) ₂ 100. 5a-2-2 H H 2,6-(CD ₃) ₂ 101. 5a-2-2 H H 2,6-(CD ₃) ₂ 102. 5a-2-2 H H 2,6-(CD ₃) ₂ 103. 6a-1-1 H H H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H H 109. 7a-1-2 Ph H H H 111. 7a-1-3 Me H H H 111. 7a-1-3 Me H H H 111. 7a-1-3 CD ₃ H H H 114. 7a-1-3 CD ₃ H H H 115. 8a-1-1 H H H T -CCD ₃ 117. 8a-1-1 H H H T -CCD ₃ 118. 8a-1-1 H H H T -CCD ₃ 119. 8a-1-1 H H T -CCD ₃ 120. 8a-1-2 H H T -CCD ₃ 121. 8a-1-2 H H T -CCD ₃ 122. 8a-1-2 H H T -CCD ₃ 123. 8a-1-2 H H T -CCD ₃ 124. 8a-2-2 H H T -CCD ₃ 135. 8a-2-3 H H H H H H H H H H H H H H H H H H H	92.	5a-2-1		4-Me	$2,6-(CD_3)_2$
95. 5a-2-1 H 4-Me 2,6-(CD ₃) ₂ 96. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 97. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 98. 5a-2-2 H H H 2,6-(CD ₃) ₂ 100. 5a-2-2 H H 2,6-(CD ₃) ₂ 101. 5a-2-2 H H 2,6-(CD ₃) ₂ 102. 5a-2-2 H H 2,6-(CD ₃) ₂ 103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Me H H H 108. 7a-1-1 CD ₃ H H H 110. 7a-1-2 Me H H H 111. 7a-1-2 CD ₃ H H H 112. 7a-1-3 Me H H H 113. 7a-1-3 Ph H H H 114. 7a-1-3 CD ₃ H H H 115. 8a-1-1 H H H H H 116. 8a-1-1 H H H H H 117. 8a-1-1 H H H H H 118. 8a-1-1 H H H H H 119. 8a-1-1 H H H H H 120. 8a-1-2 H H H H H H 120. 8a-1-2 H H H H H H 121. 8a-1-2 H H H H H H 122. 8a-1-2 H H H H H H 133. 8a-2-3 H-CD ₃ H H H 134. 8a-2-3 H H H H H 135. 9a-1-1 H H H H H H 136. 9a-1-1 H H H H H H H 137. 9a-1-1 H H H H H H H H H H 148. 8a-2-2 H H H H H H H H H H H H H H H H H H	93.	5a-2-1			$2,6-(CD_3)_2$
96. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 97. 5a-2-1 H 4-CD ₃ 2,6-(CD ₃) ₂ 98. 5a-2-2 H H H 2,6-(CD ₃) ₂ 100. 5a-2-2 H H 2,6-(CD ₃) ₂ 101. 5a-2-2 H H 2,6-(CD ₃) ₂ 102. 5a-2-2 H H 2,6-(CD ₃) ₂ 103. 6a-1-1 H H H H H 104. 6a-2-1 H H H H H 105. 6a-3-1 H H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Me H H H 108. 7a-1-1 CD ₃ H H H 109. 7a-1-2 Me H H 111. 7a-1-3 Me H H 112. 7a-1-3 Me H H 113. 7a-1-3 CD ₃ H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H H H H 116. 8a-1-1 H H H H H H 117. 8a-1-1 H H H H H H 120. 8a-1-2 H H H H H 121. 8a-1-2 H H H H H 122. 8a-1-2 H H H H H 133. 8a-1-2 H H H H H 146. 8a-2-1 H H H H H 157. 6a-2-1 H H H H H 158. 8a-2-2 H H H H H 169. 8a-2-2 H H H H H 17-CD(Me) ₂ 119. 8a-1-2 H H H H H H 190. 8a-1-1 H H H H H H H H H H H H H H H H H H	94.	5a-2-1	H	4-Me	$2,6-(CD_3)_2$
97. 5a-2-1 H	95.	5a-2-1	H	4-Me	$2,6-(CD_3)_2$
98. 5a-2-2 H H H Z,6-(CH ₃)2 100. 5a-2-2 H H Z,6-(CH ₃)2 101. 5a-2-2 H H Z,6-(CD ₃)2 101. 5a-2-2 H H Z,6-(CD ₃)2 102. 5a-2-2 H H Z,6-(CDMe ₂)2 103. 6a-1-1 H H H H H 104. 6a-2-1 H H H H H 105. 6a-3-1 H H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H 110. 7a-1-2 Me H H H 110. 7a-1-2 Ph H H 111. 7a-1-3 Me H H 112. 7a-1-3 Me H H 113. 7a-1-3 CD ₃ H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H H T 116. 8a-1-1 H H T 117. 8a-1-1 H H T 120. 8a-1-2 H H T 120. 8a-1-2 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 124. 8a-1-2 H H T 125. 8a-2-2 H H H T 126. 8a-2-2 H H H T 127. 8a-2-2 H H H T 128. 8a-2-2 H H H T 129. 8a-2-3 H H H H 131. 8a-2-3 H H H H H 131. 8a-2-3 H H H H H 131. 8a-2-1 H H H H H H 132. 8a-2-2 H H H H H 133. 8a-2-3 H-CD ₃ H H H 134. 9a-1-1 H H H H H H 135. 9a-1-1 H H H H H H H H H H H H H H H H H H	96.	5a-2-1	H	$4-CD_3$	$2,6-(CD_3)_2$
99. 5a-2-2 H H H 2,6-(CH ₃) ₂ 100. 5a-2-2 H H H 2,6-(CD ₃) ₂ 101. 5a-2-2 H H 2,6-(CDM ₂) ₂ 102. 5a-2-2 H H H 2,6-(CDM ₂) ₂ 103. 6a-1-1 H H H H H 104. 6a-2-1 H H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H 109. 7a-1-2 Me H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H H H 116. 8a-1-1 H H H H 117. 7a-1-2 CD ₃ H H 118. 8a-1-1 H H H T 119. 8a-1-1 H H T 110. 7a-1-2 Ph H H H H 111. 7a-1-3 CD ₃ H H H 112. 7a-1-3 Me H H H 113. 7a-1-3 Ph H H H T 114. 7a-1-3 CD ₃ H H H T 115. 8a-1-1 H H T T-CD ₃ 117. 8a-1-1 H H T T-CD ₃ 118. 8a-1-1 H H T T-CD ₃ 119. 8a-1-2 H H T T-CD(Me) ₂ 121. 8a-1-2 H H T T-CD(Me) ₂ 122. 8a-1-2 H H T T-CD(Me) ₂ 123. 8a-1-2 H H T T-CD(Me) ₂ 124. 8a-1-2 H H T T-CD(Me) ₂ 125. 8a-2-2 H H H T-CD ₃ 126. 8a-2-2 H H H T-CD ₃ 127. 8a-2-2 H H H H T-CD ₃ 128. 8a-2-2 H H H H T-CD ₃ 129. 8a-2-3 H H H H H H H H H H H H H H H H H H H	97.	5a-2-1	H	$4-CD_3$	
100. 5a-2-2 H H 2,6-(CD ₃) ₂ 101. 5a-2-2 H H 2,6-(CD ₃) ₂ 102. 5a-2-2 H H H 2,6-(CDMe ₂) ₂ 103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H 110. 7a-1-2 Me H H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H H T 116. 8a-1-1 H H H T 117. 8a-1-1 H H T 118. 8a-1-1 H H T 119. 8a-1-1 H H T 120. 8a-1-2 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H T 124. 8a-1-2 H H T 125. 8a-2-2 H H H T 126. 8a-2-2 H H H T 127. 8a-2-3 H H H T 128. 8a-2-2 H H H T 129. 8a-2-3 H H H T 131. 8a-2-3 H H H H T 131. 8a-2-3 H H H H T 132. 8a-2-1 H H H H T 133. 9a-1-1 H H H H H H H H H H H H H H H H H H	98.	5a-2-2	H	H	H
101. 5a-2-2 H H H 2,6-(IPT)2 102. 5a-2-2 H H H 2,6-(CDMe2)2 103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H H 108. 7a-1-1 CD3 H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD3 H H 112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD3 H H 115. 8a-1-1 H H H T 116. 8a-1-1 H H H T 117. 8a-1-1 H H H T 118. 8a-1-1 H H T 119. 8a-1-1 H H T 110. 8a-1-1 H H T 110. 8a-1-1 H H T 111. 8a-1-1 H H T 1120. 8a-1-2 H H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H H T 123. 8a-1-2 H H H T 124. 8a-2-2 H H H T 125. 8a-2-2 H H H T 126. 8a-2-2 H H H T 127. 8a-2-2 H H H T 128. 8a-2-2 H H H T 129. 8a-2-3 H H H H H 120. 8a-2-4 H H H T 121. 8a-2-3 H H H H H 122. 8a-2-3 H H H H H H 123. 8a-2-3 H H H H H H 124. 8a-2-3 H H H H H H 125. 8a-2-3 H H H H H H H H H H 126. 8a-2-1 H H H H H H H H H H 127. 8a-2-2 H-CD3 H H H H H H 128. 8a-2-3 H H H H H H H H H H H 129. 8a-2-3 H H H H H H H H H H H H H H H H H H H	99.	5a-2-2	Н	Н	$2,6-(CH_3)_2$
102. 5a-2-2 H H 2,6-(CDMe ₂) ₂ 103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H 107. 7a-1-1 Ph H H 108. 7a-1-1 CD ₃ H H 110. 7a-1-2 Me H H 111. 7a-1-2 CD ₃ H H 111. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T 116. 8a-1-1 H H T 117. 8a-1-1 H H T 119. 8a-1-1 H H T 120. 8a-1-2 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H T 124. 8a-2-2 H H H 125. 8a-2-2 H H H 126. 8a-2-2 H-CDMe ₂ H H 137. 8a-2-1 H H H 138. 8a-2-3 H-CDMe ₂ H H 139. 8a-2-3 H H 131. 8a-2-3 H H H 131. 8a-2-3 H H H 132. 8a-2-3 H H H 133. 8a-1-1 H H H H 144. 8a-1-1 H H H H 155. 9a-1-1 H H H H 164. 141. H H H 175. 164. 164. 164. 164. 164. 164. 164. 164	100.	5a-2-2			
103. 6a-1-1 H H H H 104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H H 107. 7a-1-1 Ph H H 108. 7a-1-1 CD ₃ H H 110. 7a-1-2 Me H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Me H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H H T 116. 8a-1-1 H H T 117. 8a-1-1 H H T 119. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 125. 8a-2-2 H H H T 126. 8a-2-2 H H H T 127. 8a-2-3 H H H 128. 8a-2-3 H H H 129. 8a-2-3 H H H 131. 8a-2-3 H H H H 132. 8a-2-3 H H H H 133. 8a-2-3 H H H H 134. 8a-2-1 H H H H H 155. 8a-2-2 H H H H 168. 8a-2-1 H H H H H 170. 8a-1-1 H H H H H 188. 8a-2-2 H H H H 199. 8a-2-3 H H H H 191. 8a-1-1 H H H H H H H 191. 8a-1-1 H H H H H H 191. 8a-1-2 H H H H H 191. 8a-1-2 H H H H H 191. 8a-1-2 H H H H H H 191. 8a-1-1 H H H H H H H 191. 8a-1-1 H H H H H H H 191. 8a-1-1 H H H H H H H 191. 8a-2-2 H H H H H H 191. 8a-2-3 H H H H H 191. 8a-2-3 H H H H H 191. 8a-2-3 H H H H H 191. 8a-2-1 H H H H H H 191. 8a-2-1 H H H H H H 191. 8a-2-1 H H H H H H 191. 8a-2-2 H H H H H H 191. 8a-2-2 H H H H H 191. 9a-1-2 H H H H H H 191. 9a-1-2 H H H H H 191. 9a-1-2 H H H H H		5a-2-2	Н		2,6-(iPr) ₂
104. 6a-2-1 H H H H 105. 6a-3-1 H H H H 106. 7a-1-1 Me H H 107. 7a-1-1 Ph H H 108. 7a-1-1 CD ₃ H H 110. 7a-1-2 Me H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T 116. 8a-1-1 H H T 117. 8a-1-1 H H T 119. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H T 124. 8a-1-2 H H H T 125. 8a-2-2 H H H H 126. 8a-2-2 H H H H 137. 8a-2-3 H H H 138. 8a-2-3 H H H 139. 8a-2-3 H H H 130. 8a-2-3 H H H 131. 8a-2-1 H H H H H 131. 8a-2-1 H H H H H H 132. 8a-2-2 H H H H H H H 133. 9a-1-1 H H H H H H H H H H H H H H H H H H					
105. 6a-3-1 H H H H 106. 7a-1-1 Me H H 107. 7a-1-1 Ph H H 108. 7a-1-1 CD ₃ H H 109. 7a-1-2 Me H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Me H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T 116. 8a-1-1 H H T 117. 8a-1-1 H H T 120. 8a-1-2 H H H 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H H T 123. 8a-1-2 H H H T 124. 8a-2-2 H H H 125. 8a-2-2 H H H 126. 8a-2-2 H H H 127. 8a-2-3 H H 138. 8a-1-1 H H H 149. 8a-1-1 H H H 151. 8a-1-1 H H H 17-CD(Me) ₂ 18. 8a-1-2 H H H T-CD(Me) ₂ 19. 8a-1-2 H H H T-CD(Me) ₂ 110. 8a-1-2 H H H T-CD(Me) ₂ 111. 8a-1-2 H H H T-CD(Me) ₂ 112. 8a-1-2 H H H T-CD(Me) ₂ 113. 8a-1-2 H H H T-CD(Me) ₂ 114. 8a-1-2 H H H T-CD(Me) ₂ 115. 8a-2-2 H H H T-CD(Me) ₂ 116. 8a-2-2 H H H T-CD(Me) ₂ 117. 8a-2-2 H H H H H H H H H H H H H H H H H H					
106. 7a-1-1 Me H H 107. 7a-1-1 Ph H H 108. 7a-1-1 CD ₃ H H 109. 7a-1-2 Me H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T 116. 8a-1-1 H H T 117. 7a-1-2 H H H 118. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H H 125. 8a-2-2 H H H 126. 8a-2-2 H H H 127. 8a-2-2 H H H 128. 8a-2-3 H H H 139. 8a-2-3 H 131. 8a-2-3 H H H 131. 8a-2-3 H H H 131. 8a-2-1 H H H 132. 8a-2-3 H H H 133. 8a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H H 139. 9a-1-2 H H H H 131. 9a-1-1 H H H H 131. 9a-1-1 H H H H 132. 9a-1-2 H H H H 133. 9a-1-1 H H H H 134. 9a-1-1 H H H H 135. 9a-1-1 H H H H H 136. 9a-1-1 H H H H H 137. 9a-1-1 H H H H H 138. 9a-1-2 H H H H H 139. 9a-1-2 H H H H H 144. 9a-2-2 H H H H 145. 10a-1-1 4-Me H H H 146. 11a-1-1 4-Me H H					
107. 7a-1-1 Ph H H H 108. 7a-1-1 CD ₃ H H 109. 7a-1-2 Me H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Me H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T 116. 8a-1-1 H H T 117. 8a-1-1 H H T 119. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H T 124. 8a-2-2 H H H 125. 8a-2-2 H H H 126. 8a-2-2 4-CD ₃ H H 127. 8a-2-3 H H 138. 8a-2-3 H H 149. 8a-2-3 H H 151. 8a-2-3 H H 152. 8a-2-3 H H H 153. 8a-2-3 H H H 164. 131. 8a-2-3 H H H 170. 8a-2-1 H H H H 185. 9a-1-1 H H H H H 186. 9a-1-1 H H H H H 187. 9a-1-1 H H H H H 188. 8a-2-2 H H H H H 189. 8a-2-3 H H H H 189. 8a-2-3 H H H H 189. 8a-2-3 H H H H 189. 8a-2-1 H H H H H 189. 8a-2-1 H H H H H H H 189. 8a-2-1 H H H H H H H H H H H H H H H H H H H					
108. 7a-1-1 CD ₃ H H 109. 7a-1-2 Me 110. 7a-1-2 Ph 111. 7a-1-2 CD ₃ H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me 113. 7a-1-3 Me 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H 116. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H H 125. 8a-2-2 H H H 126. 8a-2-2 H H H 127. 8a-2-3 H H H 128. 8a-2-3 H H H 139. 8a-2-3 H H H 130. 8a-2-3 H H H 131. 8a-2-1 H H H 131. 8a-1-1 H H H 132. 8a-1-2 H H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-2 H H H 136. 9a-1-2 H H H 137. 9a-1-2 H H H 138. 9a-1-2 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 145. 10a-1-1 4-Me H 146. 11a-1-1 4-Me					
109. 7a-1-2 Me H H 110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 111. 7a-1-3 Me H H 113. 7a-1-3 Me H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T 116. 8a-1-1 H H T 120. 8a-1-1 H H T 120. 8a-1-2 H H T 121. 8a-1-2 H H T 122. 8a-1-2 H H T 123. 8a-1-2 H H T 124. 8a-2-2 H H H 125. 8a-2-2 H H H 126. 8a-2-3 H H H 127. CM ₃ H H 128. 8a-2-3 H H H 139. 8a-1-1 H H H 129. 8a-1-2 H H H 120. 8a-1-2 H H H 121. 8a-1-2 H H H 122. 8a-1-2 H H H 123. 8a-1-2 H H H 144. 9a-1-2 H H H 155. 9a-1-1 H H H 164. 11a-1-1 H 174. H 175. H 176. H 177. H 177. H 178. H 188. H H H 188. H H 188. H H H 188. H H H H H H H H H H H H H H H H H H H					
110. 7a-1-2 Ph H H 111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H 7-CH ₃ 116. 8a-1-1 H H 7-CD ₃ 117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H H 7-CH ₃ 119. 8a-1-1 H H H 7-CH ₃ 120. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H H 7-CH(Me) ₂ 125. 8a-2-2 H H H 7-CH(Me) ₂ 126. 8a-2-2 H H H H H 127. 8a-2-2 H-CD ₃ H H H 128. 8a-2-3 H H H H 130. 8a-2-3 H H H H 131. 8a-2-3 H-CH ₃ H H H 132. 8a-2-3 H-CH ₃ H H H 133. 9a-1-1 H H H H 134. 9a-1-1 H H H H 135. 9a-1-1 H H H H 136. 9a-1-1 H H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H H 139. 9a-1-2 H H H H 140. 9a-1-2 H H H H 141. 9a-1-2 H H H H 142. 9a-1-2 H H H H 143. 9a-2-1 H H H H 144. 9a-2-2 H H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H			_		
111. 7a-1-2 CD ₃ H H 112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H 7-CH ₃ 116. 8a-1-1 H H 7-CD ₃ 117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H 7-CH ₃ 119. 8a-1-1 H H 7-CH ₃ 120. 8a-1-2 H H 7-CD ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CD(Me) ₂ 124. 8a-1-2 H H H 7-CH(Me) ₂ 125. 8a-2-2 H H H 7-CH(Me) ₂ 126. 8a-2-2 H H H 126. 8a-2-2 H H H 127. 8a-2-2 H H H 128. 8a-2-2 H H H 131. 8a-2-3 H H H 131. 8a-2-3 H H H H 131. 8a-2-1 H H H H 131. 8a-2-1 H H H H H 131. 8a-1-1 H H H H H H H H H H H H H H H H H H					
112. 7a-1-3 Me H H 113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H T-CH ₃ 116. 8a-1-1 H H T-CD ₃ 117. 8a-1-1 H H T-CD ₃ 118. 8a-1-1 H H T-CCH ₄ 119. 8a-1-1 H H T-CCH ₃ 120. 8a-1-2 H H T-CD ₃ 121. 8a-1-2 H T-CD ₃ 122. 8a-1-2 H T-CD ₃ 124. 8a-1-2 H H T-CCH ₄ 125. 8a-2-2 H H T-CCH ₄ 126. 8a-2-2 H H T-CCH ₄ 127. 8a-2-2 H H H T-CCH ₄ 128. 8a-2-3 H H H T-CCH ₄ 129. 8a-2-3 H H H T-CCH ₄ 130. 8a-2-3 H H H T-CCH ₄ 131. 8a-2-3 H H H T-CCH ₄ 132. 8a-1-1 H H H H H H H H H H H H H H H H H H					
113. 7a-1-3 Ph H H 114. 7a-1-3 CD ₃ H H 115. 8a-1-1 H H 7-CH ₃ 116. 8a-1-1 H H 7-CD ₃ 117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H 7-CH(Me) ₂ 119. 8a-1-1 H H H 7-CH ₃ 120. 8a-1-2 H H 7-CD ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD ₃ 123. 8a-1-2 H H 7-CD(Me) ₂ 124. 8a-1-2 H H 7-CH ₃ 125. 8a-2-2 H H 7-CH(Me) ₂ 126. 8a-2-2 H H 1 126. 8a-2-2 H H 127. 8a-2-2 H H 128. 8a-2-3 H H 129. 8a-2-3 H H 130. 8a-2-3 H H 131. 8a-2-3 H H H 131. 8a-2-3 H H H 132. 8a-2-3 H H H 133. 9a-1-1 H H H H 135. 9a-1-1 H H H H H 136. 9a-1-1 H H H H H 137. 9a-1-1 H H H H H H H 138. 9a-1-2 H H H H H H H H H H H H H H H H H H H					
114. 7a-1-3 CD ₃ H H 7-CH ₃ 115. 8a-1-1 H H 7-CH ₃ 116. 8a-1-1 H H 7-CD ₃ 117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H 7-CH(Me) ₂ 119. 8a-1-1 H H H 7-CH ₃ 120. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H 7-CH(Me) ₂ 125. 8a-2-2 H H H 7-CH(Me) ₂ 126. 8a-2-2 H H H H 125. 8a-2-2 H H H 126. 8a-2-2 H H H 127. 8a-2-3 H H H 131. 8a-2-3 H H H 131. 8a-2-3 H H H 131. 8a-2-3 H CD ₃ H H H 132. 8a-2-3 H H H H 133. 9a-1-1 H H H H H 135. 9a-1-1 H H H H H 136. 9a-1-1 H H H H H 137. 9a-1-1 H H H H H H 138. 9a-1-2 H H H H H H H H H H H H H H H H H H H					
115. 8a-1-1 H H 7-CH ₃ 116. 8a-1-1 H H 7-CD ₃ 117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H 7-CH(Me) ₂ 119. 8a-1-1 H H H 7-CH(Me) ₂ 119. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD ₃ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H 7-CH(Me) ₂ 125. 8a-2-2 H H H 7-CH(Me) ₂ 126. 8a-2-2 H H H H 125. 8a-2-2 H H H 126. 8a-2-2 H-CD ₃ H H H 127. 8a-2-3 H H H 130. 8a-2-3 H H H 131. 8a-2-3 H H H H 131. 8a-2-3 H H H H 131. 8a-2-3 H-CD ₃ H H H 132. 8a-2-3 H H H H 133. 9a-1-1 H H H H H 135. 9a-1-1 H H H H H 136. 9a-1-1 H H H H H H 137. 9a-1-1 H H H H H H 138. 9a-1-2 H H H H H H 139. 9a-1-2 H H H H H H 140. 9a-1-2 H H H H H H 141. 9a-1-2 H H H H H H H H H H H H H H H H H H H					
116. 8a-1-1 H H 7-CD ₃ 117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H 7-CH(Me) ₂ 119. 8a-1-1 H H H 7-CH(Me) ₂ 119. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H 7-CH(Me) ₂ 125. 8a-2-2 H H H H 125. 8a-2-2 H H H 126. 8a-2-2 H-CD ₃ H H 127. 8a-2-2 H-CDMe ₂ H H 130. 8a-2-3 H H H 131. 8a-2-3 H H H 132. 8a-1-1 H H H H 135. 9a-1-1 H H H H H 135. 9a-1-1 H H H H H 136. 9a-1-1 H H H H H 137. 9a-1-1 H H H H H 138. 9a-1-2 H H H H 140. 9a-1-2 H H H H 141. 9a-1-2 H H H H 141. 9a-1-2 H H H H H 141. 9a-1-2 H H H H H 142. 9a-1-2 H H H H H H H H H H H H H H H H H H H			_		
117. 8a-1-1 H H 7-CD(Me) ₂ 118. 8a-1-1 H H H 7-CH(Me) ₂ 119. 8a-1-1 H H H H 120. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H 7-CH(Me) ₂ 125. 8a-2-2 H H H H 126. 8a-2-2 H H H H 127. 8a-2-2 H-CD ₃ H H H 128. 8a-2-2 4-CD ₃ H H H 129. 8a-2-3 H H H H 130. 8a-2-3 4-CD ₃ H H H 131. 8a-2-3 4-CD ₃ H H H 131. 8a-2-3 4-CD ₃ H H H 132. 8a-1-1 H H H H 133. 9a-1-1 H H H H 134. 9a-1-1 H H H H 135. 9a-1-1 H H H H H 136. 9a-1-1 H H H H H 137. 9a-1-1 H H H H H 138. 9a-1-2 H H H H 140. 9a-1-2 H H H H 141. 9a-1-2 H H H H 142. 9a-1-2 H H H H 143. 9a-2-1 H H H H 144. 9a-2-2 H H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					-
118. 8a-1-1 H H H T-CH(Me) ₂ 119. 8a-1-1 H H H H 120. 8a-1-2 H H T-CH ₃ 121. 8a-1-2 H H T-CD ₃ 122. 8a-1-2 H H T-CD(Me) ₂ 123. 8a-1-2 H H T-CH(Me) ₂ 124. 8a-1-2 H H T-CH(Me) ₂ 124. 8a-1-2 H H H T-CH(Me) ₂ 125. 8a-2-2 H H H H H 126. 8a-2-2 H H H H 127. 8a-2-2 H-CD ₃ H H H 128. 8a-2-2 H-CDMe ₂ H H 129. 8a-2-3 H H H 130. 8a-2-3 H H H 131. 8a-2-3 H-CDMe ₂ H H 132. 8a-2-3 H-CDMe ₂ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H H 136. 9a-1-1 H H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H H 139. 9a-1-2 H H H H 140. 9a-1-2 H H H H 141. 9a-1-2 H H H H 142. 9a-1-2 H H H H 143. 9a-2-1 H H H H 144. 9a-2-2 H H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
119. 8a-1-1 H H H T-CH ₃ 120. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H H T-CH(Me) ₂ 125. 8a-2-2 H H H H 126. 8a-2-2 H H H H 127. 8a-2-2 H-CD ₃ H H 128. 8a-2-2 H-CDMe ₂ H H 129. 8a-2-3 H H H 130. 8a-2-3 H H H 131. 8a-2-3 H-CDMe ₂ H H 132. 8a-2-3 H-CDMe ₂ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H H 136. 9a-1-1 H H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H H 139. 9a-1-2 H H H H 140. 9a-1-2 H H H H 141. 9a-1-2 H H H H 142. 9a-1-2 H H H H 143. 9a-2-1 H H H H 144. 9a-2-2 H H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
120. 8a-1-2 H H 7-CH ₃ 121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H H H 125. 8a-2-2 H H H H 126. 8a-2-2 H H H H 127. 8a-2-2 H-CD ₃ H H 128. 8a-2-2 H-CD ₃ H H 129. 8a-2-3 H H H 130. 8a-2-3 H H H 131. 8a-2-3 H-CD ₃ H H 132. 8a-2-3 H-CD ₃ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-1 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H					_
121. 8a-1-2 H H 7-CD ₃ 122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H H H 125. 8a-2-2 H H H H 126. 8a-2-2 H H H H 127. 8a-2-2 4-CD ₃ H H 128. 8a-2-2 4-CDMe ₂ H H 130. 8a-2-3 H H H 131. 8a-2-3 H H H 131. 8a-2-3 4-CD ₃ H H 132. 8a-2-3 4-CD ₃ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-1 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
122. 8a-1-2 H H 7-CD(Me) ₂ 123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H H H 125. 8a-2-2 H H H H 126. 8a-2-2 4-CH ₃ H H 127. 8a-2-2 4-CD ₃ H H 128. 8a-2-2 4-CDMe ₂ H H 130. 8a-2-3 H H H 131. 8a-2-3 4-CH ₃ H H 131. 8a-2-3 4-CD ₃ H H 132. 8a-2-3 4-CD ₃ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-1 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H					
123. 8a-1-2 H H 7-CH(Me) ₂ 124. 8a-1-2 H H H H 125. 8a-2-2 H H H H 126. 8a-2-2 4-CH ₃ H H 127. 8a-2-2 4-CD ₃ H H 128. 8a-2-2 4-CDMe ₂ H H 130. 8a-2-3 H H H 131. 8a-2-3 4-CD ₃ H H 131. 8a-2-3 4-CD ₃ H H 132. 8a-2-3 4-CD ₃ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H					-
124. 8a-1-2 H H H H 125. 8a-2-2 H H H H 126. 8a-2-2 4-CH ₃ H H 127. 8a-2-2 4-CD ₃ H H 128. 8a-2-2 4-CDMe ₂ H H 129. 8a-2-3 H H H 130. 8a-2-3 4-CH ₃ H H 131. 8a-2-3 4-CD ₃ H H 132. 8a-2-3 4-CD ₃ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H H 136. 9a-1-1 H H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H					· · · · -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
128. 8a-2-2 4-CDMe2 H H 129. 8a-2-3 H H H 130. 8a-2-3 4-CH3 H H 131. 8a-2-3 4-CDMe2 H H 132. 8a-2-3 4-CDMe2 H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H 138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H					
129. 8a-2-3 H H H H 130. 8a-2-3 4-CH ₃ H H 131. 8a-2-3 4-CD ₃ H H 132. 8a-2-3 4-CDMe ₂ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H H 137. 9a-1-1 H H H H 138. 9a-1-2 H H H H 140. 9a-1-2 H H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H			_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-		
131. 8a-2-3					
132. 8a-2-3 4-CDMe ₂ H H 133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H 138. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H 146. 11a-1-1 4-Me H			-		
133. 9a-1-1 H H H 134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H 138. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H 146. 11a-1-1 4-Me H			=		
134. 9a-1-1 H H H 135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H 138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H			-		
135. 9a-1-1 H H H 136. 9a-1-1 H H H 137. 9a-1-1 H H H 138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
136. 9a-1-1 H H H 137. 9a-1-1 H H H 138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H		9a-1-1	Н	Н	Н
137. 9a-1-1 H H H 138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H	135.	9a-1-1	Н		
138. 9a-1-2 H H H 139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H	136.				
139. 9a-1-2 H H H 140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
140. 9a-1-2 H H H 141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H	138.	9a-1-2			
141. 9a-1-2 H H H 142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
142. 9a-1-2 H H H 143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H		9a-1-2	Н	Н	Н
143. 9a-2-1 H H H 144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H	141.	9a-1-2	H	Н	Н
144. 9a-2-2 H H H 145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H	142.		Н		
145. 10a-1-1 4-Me H H 146. 11a-1-1 4-Me H H					
146. 11a-1-1 4-Me H H	144.	9a-2-2	Н	H	H
		10a-1-1	4-Me	H	
147. 12a-1-1 4-Me H H		11a-1-1	4-Me		
	147.	12a-1-1	4-Me	Н	Н

18. The compound of claim **1**, wherein the compound has a formula of $M(L_A)_x(L_B)_y(L_C)_z$ wherein L_B and L_C are each a bidentate ligand; and wherein x is 1, 2, or 3; y is 0, 1, or 2; z is 0, 1, or 2; and x+y+z is the oxidation state of the metal M.

19.-22. (canceled)

23. The compound of claim 18, wherein L_B is selected from the group consisting of:

$$\begin{array}{c} R_{a} \\ R_{b} \\ R_{c} \\ \end{array} \begin{array}{c} R_{a} \\ X^{2} \\ X^{3} \\ X^{6} \\ \end{array} \begin{array}{c} X^{2} \\ X^{2} \\ X^{2} \\ X^{3} \\ \end{array} \begin{array}{c} X^{2} \\ X^{3} \\ X^{2} \\ \end{array} \begin{array}{c} X^{2} \\ X^{3} \\ X^{3} \\ \end{array} \begin{array}{c} X^{3} \\ X^{3} \\ X^{4} \\ \end{array} \begin{array}{c} X^{3} \\ X^{4} \\ X^{4} \\ X^{4} \\ \end{array} \begin{array}{c} X^{3} \\ X^{4} \\ X^{4} \\ X^{4} \\ \end{array} \begin{array}{c} X^{3} \\ X^{4} \\ X^{4} \\ X^{4} \\ \end{array} \begin{array}{c} X^{3} \\ X^{4} \\ X^{4} \\ X^{4} \\ \end{array} \begin{array}{c} X^{3} \\ X^{4} \\ X^{4} \\ X^{4} \\ X^{4} \\ \end{array} \begin{array}{c} X^{3} \\ X^{4} \\ X^{5} \\ X^{5$$

wherein X is selected from the group consisting of BR', NR', PR', O, S, Se, C=O, S=O, SO₂, CR'R", SiR'R", and GeR'R";

wherein R' and R" are optionally fused or joined to form

wherein each R_a , R_b , R_c , and R_d may independently represent mono to the maximum possible number of substitution, or no substitution;

wherein each R', R", R_a , R_b , R_c , and R_d are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

wherein any two adjacent substituents of R_a , R_b , R_c , and R_d are optionally fused or joined to form a ring or to form a multidentate ligand.

24. The compound of claim 23, wherein L_B is selected from the group consisting of:

$$R_a$$
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

$$\begin{array}{c} R_{a} \\ X^{2} - X^{1} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} R_{a} \\ X^{2} - X^{1} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{7} \\ X^{8} \\ X^{9} \\ X^{1} \end{array}$$

$$\begin{array}{c} X^{7} \\ R_{b} \\ X^{8} \\ X^{9} \end{array}$$

$$\begin{array}{c} X^{7} \\ X^{8} \\ X^{9} \\ X^{1} \end{array}$$

$$\begin{array}{c} X^{7} \\ R_{c} \\ X^{1} \end{array}$$

$$\begin{array}{c} X^{7} \\ X^{8} \\ X^{9} \\ X^{10} \end{array}$$

$$\begin{array}{c} X^{7} \\ X^{1} \\ X^{1} \\ X^{2} \\ X^{1} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{1} \\ X^{2} \\ X^{2} \end{array}$$

$$\begin{array}{c} X^{1} \\ X^{2} \\ X^{3} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{1} \\ X^{2} \\ X^{3} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{3} \\ X^{4} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{4} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{4} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{4} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{5} \\ X^{6} \end{array}$$

$$\begin{array}{c} X^{2} \\ X^{5} \\ X^{6} \end{array}$$

wherein each
$$X^1$$
 to X^{13} are independently selected from
the group consisting of carbon and nitrogen:

the group consisting of carbon and nitrogen;

-continued

$$R_a$$
 R_b
 R_c
 R_a
 R_b
 R_c
 R_a
 R_b
 R_c
 R_a
 R_b
 R_a
 R_b

25. The compound of claim 17, wherein the compound is the Compound Ax having the formula ${\rm Ir}({\rm L}_{Ai})_2({\rm L}_{Cj});$

wherein x=17i+j-17; i is an integer from 1 to 147, and j is an integer from 1 to 17; and

wherein L_C is selected from the group consisting of:

$$L_{CI0}$$
 CD_3 ,
 L_{CI1}

 \mathcal{L}_{C13}

-continued

L_{C12}

$$L_{C16}$$

-continued

26. The compound of claim 1, wherein the compound is the Compound By having the formula $Ir(L_{Ai})(L_{Bk})_2$;

wherein y=300i+k-300; i is an integer from 1 to 147, and k is an integer from 1 to 300; and

wherein $L_{\mathcal{B}}$ is selected from the group consisting of:

$$L_{B1}$$

$$L_{B2}$$

L_{B5}

$$D_3C$$

$$L_{B11}$$

$$L_{B12}$$

$$L_{B13}$$
 D_3C

$$L_{B14}$$
 D_3C
 N

$$L_{B15}$$
 D_3C
 N

$$L_{B16}$$

$$L_{B17}$$

$$L_{B19}$$

$$L_{B20}$$

$$L_{B21}$$

$$L_{B23}$$

$$L_{B24}$$

$$L_{B25}$$

$$L_{B26}$$
 D
 N

$$\begin{array}{c} D \\ D_{3}C \\ \end{array}$$

$$L_{B28}$$

$$\begin{array}{c} \text{L}_{B29} \\ \text{D}_{3}\text{C} \\ \end{array}$$

$$L_{B30}$$

$$L_{B31}$$

$$L_{B34}$$
 CD_3

$$L_{B35}$$
 D
 D
 CD_3

L_{B36}

$$\begin{array}{c} L_{B37} \\ \\ \\ D \\ \\ \end{array}$$

$$L_{B38}$$

$$L_{B39}$$

$$L_{B40}$$

$$L_{B41}$$

$$L_{B43}$$
 $D_{3}C$
 N

$$L_{B44}$$

$$D_3C$$

$$L_{B48}$$

$$D_3C$$
 D D D_3C D D

 \mathcal{L}_{B50}

$$D$$
 D CD_3 D_3C

$$\begin{array}{c} L_{BS1} \\ \end{array}$$

$$L_{B52}$$

$$L_{B57}$$

$$L_{B58}$$

$$L_{B59}$$

$$\begin{array}{c} \text{CD}_3\\ \text{CD}_3\\ \text{N}\\ \end{array}$$

$$D_3C$$
 CD_3
 D_3C
 N
 N

$$CD_3$$
 CD_3
 N

$$L_{B63}$$
 D_3C
 CD_3
 CD_3

 \mathbf{L}_{B72}

-continued

 L_{B67}

 L_{B68}

 \mathcal{L}_{B69}

$$L_{B70}$$

-continued

$$L_{B71}$$

N.

$$L_{B73}$$

L_{B76}

$$L_{B77}$$

$$L_{B81}$$

$$L_{B82}$$

 \mathbb{L}_{B90}

 \mathbb{L}_{B91}

-continued

 L_{B86}

$$L_{B87}$$

 \mathcal{L}_{B89}

$$CD_3$$
 D_3C
 D
 CD_3

$$D_3C$$
 D
 D
 D

 \mathcal{L}_{B94}

-continued
$$L_{B98}$$

$$D_{3}C$$

$$D_{3}C$$

$$D_{3}C$$

$$D_{3}C$$

$$D_{3}C$$

$$D_{3}C$$

 \mathcal{L}_{B95}

$$D_3C$$
 D
 CD_3
 CD_3

$$L_{B96}$$
 D_3C
 D
 CD_3
 D_3C
 D
 CD_3
 CD_3

 \mathbb{L}_{B101}

 \mathbb{L}_{B99}

 \mathbb{L}_{B100}

 L_{B102}

$$L_{B103}$$

$$L_{B104}$$

$$L_{B105}$$
 $D_{3}C$
 N

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C

$$L_{B107}$$
 D_3C
 CD_3
 CD_3

$$L_{B108}$$
 D_3C
 D_3

$$D$$
 CD_3
 D_3C
 D_3C

 D_3C D_3C N N

$$D_3C$$
 D_3C
 D_3C
 D_3C

$$L_{B112}$$
 D_3C
 N

-continued

L_{B115}

$$\begin{array}{c} \text{L}_{B118} \\ \text{D} \\ \text{D} \\ \text{CD}_3 \\ \text{CD}_3 \\ \end{array}$$

$$L_{B119}$$
 D
 CD_3
 CD_3
 CD_3

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C

$$L_{B121}$$

$$L_{B122}$$
 D
 D
 N
 CD_3

$$L_{B123}$$

$$\begin{array}{c} L_{B124} \\ \\ D \\ \\ CD_3 \end{array}$$

$$L_{B125}$$
 CD_3
 D_3C
 CD_3

$$L_{B126}$$
 D_3C
 D_3C
 D_3C

$$\begin{array}{c} CD_3 \\ \\ D_3C \\ \\ D_3C \\ \end{array}$$

 \mathbb{L}_{B132}

-continued

 \mathbb{L}_{B128}

 \mathcal{L}_{B129}

$$D_3C$$
 D_3C
 D_3C

$$D_3C$$
 D_3C
 CD_3
 CD_3

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C

$$\begin{array}{c} \text{CD}_3\\ \text{D}_3\text{C}\\ \text{D}\\ \text{CD}_3\\ \text{CD}_3\\ \text{CD}_3\\ \end{array}$$

$$L_{B130}$$
 D_3C
 CD_3
 D_3C
 CD_3
 CD_3
 D_3C
 CD_3
 CD_3
 CD_3

$$\begin{array}{c} \text{CD}_3 & \text{CD}_3 \\ \text{D}_3\text{C} & \\ \text{D}_3\text{C} & \\ \text{D}_2\text{CD}_3 & \text{CD}_3 \end{array}$$

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C

$$L_{B135}$$
 D_3C
 CD_3
 CD_3
 CD_3

$$L_{B136}$$
 D_3C
 N

$$L_{B139}$$

$$L_{B141}$$

$$L_{B142}$$

$$L_{B143}$$

$$L_{E144}$$

 L_{B146}

$$\begin{array}{c} D \\ D \\ \end{array}$$

 L_{B148}

$$\begin{array}{c} D \\ \hline \\ CD_3 \end{array}$$

-continued

 $\begin{array}{c} L_{B150} \\ \\ \\ CD_3 \end{array}$

$$L_{B151}$$

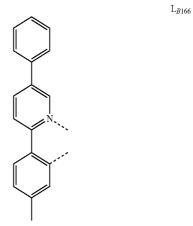
-continued \mathbb{L}_{B153}

$$L_{B154}$$

$$L_{B155}$$

 \mathcal{L}_{B157}

 \mathbb{L}_{B158}


 \mathbb{L}_{B162}

CD₃

$$L_{B163}$$

 L_{B165}

$$L_{B164}$$

$$L_{B168}$$

 \mathbb{L}_{B174}

 L_{B175}

 L_{B176}

 \mathcal{L}_{B177}

-continued

$$D_3C$$

 \mathcal{L}_{B170}

 \mathbb{L}_{B171}

$$L_{B172}$$

$$\sum_{CD_3}^{N}$$

$$CD_3$$
 CD_3
 CD_3

 \mathbb{L}_{B173}

 \mathbb{L}_{B182}

-continued

 \mathcal{L}_{B180}

 L_{B178} L_{B179}

 \mathbb{L}_{B181}

-continued

 \mathbb{L}_{B183}

 \mathbb{L}_{B184}

 \mathbb{L}_{B185}

L_{B186}

$$L_{B186}$$

 \mathcal{L}_{B189}

$$L_{B190}$$

$$L_{B191}$$

$$L_{B192}$$

L_{B193}

$$L_{B195}$$

$$L_{B197}$$
 CD_3
 L_{B198}

$$CD_3$$
 CD_3
 CD_3

$$CD_3$$
 CD_3
 CD_3
 CD_3

 \mathbb{L}_{B202}

$$L_{B204}$$

$$L_{B207}$$

$$L_{E208}$$

$$L_{B209}$$

$$L_{B210}$$

 L_{B211} D_3C CD_3 CD_3

$$L_{B212}$$
 $D_{3}C$
 N
 CD_{3}
 CD_{3}

$$L_{B214}$$

D CD₃ L_{B221}

$$L_{B222}$$
 D_3C
 N

$$L_{B223}$$
 CD_3
 CD_3

$$L_{B224}$$
 D_3C
 N
 CD_3
 CD_3

$$L_{B225}$$
 D_3C
 CD_3
 CD_3

 \mathbb{L}_{B230}

-continued

$$L_{B234}$$
 $D_{3}C$
 N
 $D_{3}C$

 \mathbb{L}_{B231}

$$CD_3$$
 D_3C
 N
 D_3C

 \mathbb{L}_{B236}

$$D_3C$$
 CD_3
 CD_3

$$D_3C$$

 \mathcal{L}_{B233}

$$D_3C$$
 CD_3
 D_3C
 CD_3

 \mathbb{L}_{B237}

 \mathbb{L}_{B242}

-continued

 \mathbb{L}_{B238}

-continued

$$D_3C$$
 D_3C
 D_3C
 D_3C
 D_3C
 D_3C

 L_{B239}

 L_{B240}

$$D_3C$$

 \mathbb{L}_{B241}

$$N$$
 CD_3

 \mathbb{L}_{B243}

 \mathbb{L}_{B244}

 \mathbb{L}_{B249}

-continued

-continued

 L_{B246}

 \mathcal{L}_{B247}

 \mathbb{L}_{B250}

$$D_3C$$

 \mathbb{L}_{B251}

-continued

$$D_3C$$
 CD_3

$$D_3C$$

$$L_{B252}$$

 L_{B254}

 \mathcal{L}_{B259}

-continued

 \mathcal{L}_{B260}

$$L_{B264}$$

 \mathbb{L}_{B265}

 \mathbb{L}_{B261}

$$L_{B266}$$
 $D_{3}C$
 CD_{3}

$$L_{B267}$$
 CD_3
 D_3C
 CD_3

$$L_{B270}$$
 $D_{3}C$
 CD_{3}

$$L_{B271}$$

$$L_{B272}$$
 D_3C
 CD_3
 D_3C
 CD_3

$$L_{B276}$$
 N
 CD_3

L_{B277}

$$D_3C$$
 CD_3

$$L_{B281}$$
 N
 CD_3

$$L_{B282}$$
 D_3C
 CD_3

$$L_{B286}$$
 Pr
 Pr

 \mathcal{L}_{B288}

-continued

L_{B287}

L_{B289}

L_{B290}

L_{B297}

$$L_{B299}$$
 $D_{3}C$
 L_{B300}

27. An organic light emitting device (OLED) comprising: an anode;

a cathode; and

an organic layer, disposed between the anode and the cathode, comprising a compound comprising a first ligand L₄ having the Formula:

 \mathbb{R}^4 \mathbb{A} \mathbb{Z}^1 \mathbb{B} \mathbb{Z}^2

Formula I

wherein rings A and B are each a 5- or 6-membered cathocyclic or heterocyclic ring;

wherein each R^A and R^B independently represents mono to the maximum possible number of substitution, or no substitution;

wherein Z^1 and Z^2 are each independently selected from the group consisting of carbon or nitrogen.

the group consisting of carbon or nitrogen; wherein each R^A and R^B are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, a boron containing group, and combinations thereof;

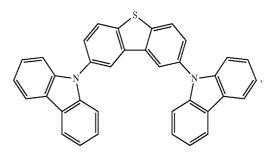
wherein any adjacent substituents are optionally joined or fused to form a ring;

wherein (1) at least one R^A or R^B comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^A or one pair of two adjacent R^B form a first group fused to ring A or B;

wherein the first group including the fused edge is a closo-carborane having a formula of C₂B_nH_n;

wherein n is an integer of 3 to 10;

wherein the closo-carborane can be further substituted; wherein the ligand L_A is coordinated to a metal M;

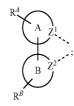

wherein the metal M can be coordinated to other ligands; and

wherein the ligand L_A is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

28.-29. (canceled)

30. The OLED of claim 27, wherein the organic layer further comprises a host, wherein the host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, azatriphenylene, azacarbazole, azadibenzothiophene, aza-dibenzofuran, and aza-dibenzoselenophene.

31. The OLED of claim **27**, wherein the organic layer further comprises a host selected from the group consisting of:


and combinations thereof.

- 32. (canceled)
- **33**. A consumer product comprising an organic light-emitting device (OLED) comprising:

an anode;

- a cathode; and
- an organic layer, disposed between the anode and the cathode, comprising a compound comprising a first ligand L_A having the Formula:

Formula I

wherein rings A and B are each a 5- or 6-membered cathocyclic or heterocyclic ring;

wherein each R^A and R^B independently represents mono to the maximum possible number of substitution, or no substitution;

wherein Z^1 and Z^2 are each independently selected from the group consisting of carbon or nitrogen;

wherein each R^A and R^B are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, a boron containing group, and combinations thereof;

wherein any adjacent substituents are optionally joined or fused to form a ring; wherein (1) at least one R^A or R^B comprises an aromatic group further fused by a first group; or (2) at least one pair of two adjacent R^A or one pair of two adjacent R_B form a first group fused to ring A or B;

wherein the first group including the fused edge is a closo-carborane having a formula of C₂B_nH_n;

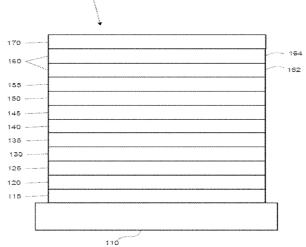
wherein n is an integer of 3 to 10;

wherein the closo-carborane can be further substituted; wherein the ligand L_A is coordinated to a metal M;

wherein the metal M can be coordinated to other ligands; and

wherein the ligand $\mathcal{L}_{\mathcal{A}}$ is optionally linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

34. (canceled)


* * * * *

专利名称(译)	有机电致发光材料和器件		
公开(公告)号	US20180261786A1	公开(公告)日	2018-09-13
申请号	US15/915385	申请日	2018-03-08
[标]申请(专利权)人(译)	环球展览公司		
申请(专利权)人(译)	通用显示器公司		
当前申请(专利权)人(译)	通用显示器公司		
[标]发明人	TSAI JUI YI DYATKIN ALEXEY BORISOVICH KOTTAS GREGG LIN CHUN		
发明人	TSAI, JUI-YI DYATKIN, ALEXEY BORISOVICH KOTTAS, GREGG LIN, CHUN		
IPC分类号	H01L51/50 H01L51/52 H01L27/32 C07F15/00 C09K11/06 H01L51/00		
CPC分类号	H01L51/5024 H01L51/5056 H01L51/5072 H01L51/5092 H01L51/5096 H01L51/5234 H01L51/5206 H01L27/322 C07F15/0033 C07F15/0086 C09K11/06 H01L51/0085 H01L51/0087 C09K2211/185 C09K2211/1059 C09K2211/1051 C09K2211/1048 C09K2211/1033 C09K2211/1037 H01L51/0072 H01L51/0074 H01L51/008 H01L51/5016		
优先权	62/469605 2017-03-10 US		
外部链接	Espacenet USPTO		

摘要(译)

本发明包括含有碳硼烷部分的金属配合物。这些金属配合物在OLED中显示出所需的性质。

